
External Interfaces Reference
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB External Interfaces Reference
© COPYRIGHT 1984 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

December 1996 First printing
May 1997 Online only Revised for 5.1 (Release 9)
January 1998 Online only Revised for 5.2 (Release 10)
January 1999 Online only Revised for 5.3 (Release 11)
September 2000 Online only Revised for 6.0 (Release 12)
June 2001 Online only Revised for 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)

i

Contents

1
Dynamic Link Libraries

2
MAT-File Access (C)

3
MX Array Manipulation (C)

4
MEX-Files (C)

5
MATLAB Engine (C)

6
MAT-File Access (Fortran)

7
MX Array Manipulation (Fortran)

ii Contents

8
MEX-Files (Fortran)

9
MATLAB Engine (Fortran)

10
Java

11
Component Object Model and ActiveX

COM Client . 11-2

COM Server . 11-4

12
Dynamic Data Exchange

13
Web Services

iii

14
Serial Port Devices

Index

iv Contents

1
Dynamic Link Libraries
calllib Call function in external library

libfunctions Return information on functions in external library

libfunctionsview Create window displaying information on functions in
external library

libisloaded Determine if external library is loaded

libpointer Create pointer object for use with external libraries

libstruct Construct structure as defined in external library

loadlibrary Load external library into MATLAB®

unloadlibrary Unload external library from memory

1-2

2
MAT-File Access (C)
matClose Close MAT-file

matDeleteArray (Obsolete) Use matDeleteVariable

matDeleteMatrix (Obsolete) Use matDeleteVariable

matDeleteVariable Delete named mxArray from MAT-file

matGetArray (Obsolete) Use matGetVariable

matGetArrayHeader (Obsolete) Use matGetVariableInfo

matGetDir Get directory of mxArrays in MAT-file

matGetFp Get file pointer to MAT-file

matGetFull (Obsolete) Use matGetVariable followed by appropriate mxGet routines

matGetMatrix (Obsolete) Use matGetVariable

matGetNextArray (Obsolete) Use matGetNextVariable

matGetNextArrayHeader (Obsolete) Use matGetNextArrayHeaderFromMATfile

matGetNextMatrix (Obsolete) Use matGetNextVariable

matGetNextVariable Read next mxArray from MAT-file

matGetNextVariableInfo Load array header information only

matGetString (Obsolete) Use matGetVariable and mxGetString

matGetVariable Read mxArray from MAT-file

matGetVariableInfo Load header array information only

matOpen Open MAT-file

matPutArray (Obsolete) Use matPutVariable

matPutArrayAsGlobal (Obsolete) Use matPutVariableAsGlobal

matPutFull (Obsolete) Use mxCreateDoubleMatrix and matPutVariable

matPutMatrix (Obsolete) Use matPutVariable

matPutString (Obsolete) Use mxCreateString and matPutVariable

2-2

matPutVariable Write mxArrays into MAT-files

matPutVariableAsGlobal Put mxArrays into MAT-files

matClose

2-3

2matClosePurpose Close MAT-file

C Syntax #include "mat.h"
int matClose(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information.

Description matClose closes the MAT-file associated with mfp. It returns EOF for a write
error, and zero if successful.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matDeleteArray (Obsolete)

2-4

2matDeleteArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matDeleteVariable(mfp, name)

instead of

matDeleteArray(mfp, name)

See Also matDeleteVariable

matDeleteMatrix (Obsolete)

2-5

2matDeleteMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matDeleteVariable(mfp, name)

instead of

matDeleteMatrix(mfp, name)

See Also matDeleteVariable

matDeleteVariable

2-6

2matDeleteVariablePurpose Delete named mxArray from MAT-file

C Syntax #include "mat.h"
int matDeleteVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

Description matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. matDeleteVariable returns 0 if successful, and nonzero otherwise.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetArray (Obsolete)

2-7

2matGetArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetVariable(mfp, name);

instead of

mp = matGetArray(mfp, name);

See Also matGetVariable

matGetArrayHeader (Obsolete)

2-8

2matGetArrayHeader (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetVariableInfo(mfp, name);

instead of

mp = matGetArrayHeader(mfp, name);

See Also matGetVariableInfo

matGetDir

2-9

2matGetDirPurpose Get directory of mxArrays in MAT-file

C Syntax #include "mat.h"
char **matGetDir(MATFile *mfp, int *num);

Arguments mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

Description This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
NULL-terminated names of the mxArrays in the MAT-file pointed to by mfp. The
length of the internal array (number of mxArrays in the MAT-file) is placed into
num. The internal array is allocated using a single mxCalloc and must be freed
using mxFree when you are finished with it.

matGetDir returns NULL and sets num to a negative number if it fails. If num is
zero, mfp contains no arrays.

MATLAB variable names can be up to length mxMAXNAM, where mxMAXNAM is
defined in the file matrix.h.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFp

2-10

2matGetFpPurpose Get file pointer to MAT-file

C Syntax #include "mat.h"
FILE *matGetFp(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information.

Description matGetFp returns the C file handle to the MAT-file with handle mfp. This can
be useful for using standard C library routines like ferror() and feof() to
investigate error situations.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFull (Obsolete)

2-11

2matGetFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matGetVariable followed by the appropriate mxGet routines

instead of

matGetFull

For example,

int matGetFull(MATFile *fp, char *name, int *m, int *n,
double **pr, double **pi)

{
 mxArray *parr;
 /* Get the matrix. */
 parr = matGetVariable(fp, name);

 if (parr == NULL)
 return(1);

 if (!mxIsDouble(parr)) {
mxDestroyArray(parr);
return(1);

 }
 /* Set up return args. */

 *m = mxGetM(parr);
 *n = mxGetN(parr);
 *pr = mxGetPr(parr);
 *pi = mxGetPi(parr);
 /* Zero out pr & pi in array struct so the mxArray can be

destroyed. */
 mxSetPr(parr, (void *)0);
 mxSetPi(parr, (void *)0);

 mxDestroyArray(parr);

 return(0);
}

matGetFull (Obsolete)

2-12

See Also matGetVariable

matGetMatrix (Obsolete)

2-13

2matGetMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mp = matGetVariable(mfp, name)

instead of

mp = matGetMatrix(mfp, name);

See Also matGetVariable

matGetNextArray (Obsolete)

2-14

2matGetNextArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetNextVariable(mfp, name);

instead of

mp = matGetNextArray(mfp);

See Also matGetNextVariable

matGetNextArrayHeader (Obsolete)

2-15

2matGetNextArrayHeader (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matGetNextVariableInfo

instead of

matGetNextArrayHeader

See Also matGetNextVariableInfo

matGetNextMatrix (Obsolete)

2-16

2matGetNextMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matGetNextVariable

instead of

matGetNextMatrix

See Also matGetNextVariable

matGetNextVariable

2-17

2matGetNextVariablePurpose Read next mxArray from MAT-file

C Syntax #include "mat.h"
mxArray *matGetNextVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns NULL when the end-of-file is reached or if there is
an error condition. Use feof and ferror from the Standard C Library to
determine status.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextVariableInfo

2-18

2matGetNextVariableInfoPurpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetNextVariableInfo(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to
MATLAB or saved to MAT-files.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

See Also matGetNextVariable, matGetVariableInfo

matGetString (Obsolete)

2-19

2matGetString (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

#include "mat.h"
#include "matrix.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);
int mxGetString(const mxArray *array_ptr, char *buf, int buflen)

instead of

matGetString

See Also matGetVariable, mxGetString

matGetVariable

2-20

2matGetVariablePurpose Read mxArrays from MAT-files

C Syntax #include "mat.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

Description This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or NULL if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetVariableInfo

2-21

2matGetVariableInfoPurpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray.

Description matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells and
structures through their leaf elements, but does not include pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonNULL when loaded with matGetVariable, then
matGetVariableInfo sets them to -1 instead. These headers are for
informational use only and should never be passed back to MATLAB or saved
to MAT-files.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

See Also matGetVariable

matOpen

2-22

2matOpen Purpose Open MAT-file

C Syntax #include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

Arguments filename
Name of file to open.

mode
File opening mode. Valid values for mode are:

Description This routine allows you to open MAT-files for reading and writing.

matOpen opens the named file and returns a file handle, or NULL if the open
fails.

See “Writing Character Data” in the External Interfaces documentation for
more information on how MATLAB uses character encodings.

r Open file for reading only; determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Open file for update, both reading and writing, but does not
create the file if the file does not exist (equivalent to the r+
mode of fopen); determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Open file for writing only; deletes previous contents, if any.

w4 Create a Level 4 MAT-file, compatible with MATLAB Versions 4
and earlier.

wL Open file for writing character data using the default character
set for your system. The resulting MAT-file can be read with
MATLAB version 6 or 6.5.
If you do not use the wL mode switch, MATLAB writes
character data to the MAT-file using Unicode character
encoding by default.

wz Open file for writing compressed data.

matOpen

2-23

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutArray (Obsolete)

2-24

2matPutArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matPutVariable(mfp, name, mp);

instead of

mxSetName(mp, name);
matPutArray(mfp, mp);

See Also matPutVariable

matPutArrayAsGlobal (Obsolete)

2-25

2matPutArrayAsGlobal (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matPutVariableAsGlobal

instead of

matPutArrayAsGlobal

See Also matPutVariableAsGlobal

matPutFull (Obsolete)

2-26

2matPutFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mxCreateDoubleMatrix and matPutVariable

instead of

matPutFull

For example,

int matPutFull(MATFile*ph, char *name, int m, int n, double *pr,
double *pi)

{
int retval;
mxArray *parr;

/* Get empty array struct to place inputs into. */
parr = mxCreateDoubleMatrix(0, 0, 0);
if (parr == NULL)

return(1);

/* Place inputs into array struct. */
mxSetM(parr, m);
mxSetN(parr, n);
mxSetPr(parr, pr);
mxSetPi(parr, pi);

/* Use put to place array on file. */
retval = matPutVariable(ph, name, parr);

/* Zero out pr & pi in array struct so the mxArray can be
destroyed. */

mxSetPr(parr, (void *)0);
mxSetPi(parr, (void *)0);

mxDestroyArray(parr);

return(retval);
}

matPutFull (Obsolete)

2-27

See Also mxCreateDoubleMatrix, matPutVariable

matPutMatrix (Obsolete)

2-28

2matPutMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matPutVariable

instead of

matPutMatrix

See Also matPutVariable

matPutString (Obsolete)

2-29

2matPutString (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

#include "matrix.h"
#include "mat.h"
mp = mxCreateString(str);
matPutVariable(mfp, name, mp);
mxDestroyArray(mp);

instead of

matPutString(mfp, name, str);

See Also matPutVariable

matPutVariable

2-30

2matPutVariablePurpose Write mxArrays to MAT-files

C Syntax #include "mat.h"
int matPutVariable(MATFile *mfp, const char *name, const mxArray

*mp);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray mp to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs. Use
feof and ferror from the Standard C Library along with matGetFp to
determine status.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutVariableAsGlobal

2-31

2matPutVariableAsGlobalPurpose Put mxArrays into MAT-files as originating from global workspace

C Syntax #include "mat.h"
int matPutVariableAsGlobal(MATFile *mfp, const char *name, const

mxArray *mp);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray mp to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.
Use feof and ferror from the Standard C Library with matGetFp to determine
status.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutVariableAsGlobal

2-32

3
MX Array Manipulation
(C)
mxAddField Add field to structure array

mxArrayToString Convert array to string

mxAssert Check assertion value

mxAssertS Check assertion value without printing assertion text

mxCalcSingleSubscript Return offset from first element to desired element

mxCalloc Allocate dynamic memory

mxChar Data type for string mxArray

mxClassID Integer value that identifies class of mxArray

mxClearLogical (Obsolete) Clear logical flag

mxComplexity Specifies if mxArray has imaginary components

mxCreateCellArray Create unpopulated N-dimensional cell mxArray

mxCreateCellMatrix Create unpopulated two-dimensional cell mxArray

mxCreateCharArray Create unpopulated N-dimensional string mxArray

mxCreateCharMatrixFromStrings Create populated two-dimensional string mxArray

mxCreateDoubleMatrix Create unpopulated two-dimensional, double-precision,
floating-point mxArray

mxCreateDoubleScalar Create scalar, double-precision array initialized to specified
value

mxCreateLogicalArray Create N-dimensional, logical mxArray initialized to false

mxCreateLogicalMatrix Create two-dimensional, logical mxArray initialized to false

mxCreateLogicalScalar Create scalar, logical mxArray initialized to false

mxCreateFull (Obsolete) Use mxCreateDoubleMatrix

mxCreateNumericArray Create unpopulated N-dimensional numeric mxArray

mxCreateNumericMatrix Create numeric matrix and initialize data elements to 0

3-2

mxCreateScalarDouble Create scalar, double-precision array initialized to specified
value

mxCreateSparse Create two-dimensional unpopulated sparse mxArray

mxCreateSparseLogicalMatrix Create unpopulated, two-dimensional, sparse, logical
mxArray

mxCreateString Create 1-by-n string mxArray initialized to specified string

mxCreateStructArray Create unpopulated N-dimensional structure mxArray

mxCreateStructMatrix Create unpopulated two-dimensional structure mxArray

mxDestroyArray Free dynamic memory allocated by an mxCreate routine

mxDuplicateArray Make deep copy of array

mxFree Free dynamic memory allocated by mxCalloc

mxFreeMatrix (Obsolete) Use mxDestroyArray

mxGetCell Get cell’s contents

mxGetChars Get pointer to character array data

mxGetClassID Get class of mxArray

mxGetClassName Get class of mxArray as string

mxGetData Get pointer to data

mxGetDimensions Get pointer to dimensions array

mxGetElementSize Get number of bytes required to store each data element

mxGetEps Get value of eps

mxGetField Get field value, given field name and index in structure array

mxGetFieldByNumber Get field value, given field number and index in structure
array

mxGetFieldNameByNumber Get field name, given field number in structure array

mxGetFieldNumber Get field number, given field name in structure array

mxGetImagData Get pointer to imaginary data of mxArray

mxGetInf Get value of infinity

3-3

mxGetIr Get ir array of sparse matrix

mxGetJc Get jc array of sparse matrix

mxGetLogicals Get pointer to logical array data

mxGetM Get number of rows

mxGetN Get number of columns or number of elements

mxGetName (Obsolete) Get name of specified mxArray

mxGetNaN Get the value of NaN

mxGetNumberOfDimensions Get number of dimensions

mxGetNumberOfElements Get number of elements in array

mxGetNumberOfFields Get number of fields in structure mxArray

mxGetNzmax Get number of elements in ir, pr, and pi arrays

mxGetPi Get imaginary data elements of mxArray

mxGetPr Get real data elements of mxArray

mxGetScalar Get real component of first data element in mxArray

mxGetString Copy string mxArray to C-style string

mxIsCell Determine if input is cell mxArray

mxIsChar Determine if input is string mxArray

mxIsClass Determine if mxArray is member of specified class

mxIsComplex Determine if data is complex

mxIsDouble Determine if mxArray represents its data as double-precision,
floating-point numbers

mxIsEmpty Determine if mxArray is empty

mxIsFinite Determine if input is finite

mxIsFromGlobalWS Determine if mxArray was copied from the MATLAB global
workspace

mxIsFull (Obsolete) Use mxIsSparse

mxIsInf Determine if input is infinite

3-4

mxIsInt8 Determine if mxArray represents data as signed 8-bit integers

mxIsInt16 Determine if mxArray represents data as signed 16-bit
integers

mxIsInt32 Determine if mxArray represents data as signed 32-bit
integers

mxIsInt64 Determine if mxArray represents data as signed 64-bit
integers

mxIsLogical Determine if mxArray is Boolean

mxIsLogicalScalar Determine if input is scalar mxArray of class mxLogical

mxIsLogicalScalarTrue Determine if scalar mxArray of class mxLogical is true

mxIsNaN Determine if input is NaN

mxIsNumeric Determine if mxArray is numeric

mxIsSingle Determine if mxArray represents data as single-precision,
floating-point numbers

mxIsSparse Determine if input is sparse mxArray

mxIsString (Obsolete) Use mxIsChar

mxIsStruct Determine if input is structure mxArray

mxIsUint8 Determine if mxArray represents data as unsigned 8-bit
integers

mxIsUint16 Determine if mxArray represents data as unsigned 16-bit
integers

mxIsUint32 Determine if mxArray represents data as unsigned 32-bit
integers

mxIsUint64 Determine if mxArray represents data as unsigned 64-bit
integers

mxMalloc Allocate dynamic memory using the MATLAB memory
manager

mxRealloc Reallocate memory

mxRemoveField Remove field from structure array

3-5

mxSetCell Set value of one cell

mxSetClassName Convert MATLAB structure array to MATLAB object array

mxSetData Set pointer to data

mxSetDimensions Modify number/size of dimensions

mxSetField Set field value of structure array, given field name/index

mxSetFieldByNumber Set field value in structure array, given field number/index

mxSetImagData Set imaginary data pointer for mxArray

mxSetIr Set ir array of sparse mxArray

mxSetJc Set jc array of sparse mxArray

mxSetLogical (Obsolete) Set logical flag

mxSetM Set number of rows

mxSetN Set number of columns

mxSetName (Obsolete) Set name of mxArray

mxSetNzmax Set storage space for nonzero elements

mxSetPi Set new imaginary data for mxArray

mxSetPr Set new real data for mxArray

mxAddField

3-6

3mxAddFieldPurpose Add field to structure array

C Syntax #include "matrix.h"
extern int mxAddField(mxArray array_ptr, const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

field_name
The name of the field you want to add.

Returns Field number on success or -1 if inputs are invalid or an out of memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the
individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

mxArrayToString

3-7

3mxArrayToStringPurpose Convert array to string

C Syntax #include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

Returns A C-style string. Returns NULL on out of memory.

Description Call mxArrayToString to copy the character data of a string mxArray into a
C-style string. The C-style string is always terminated with a NULL character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array. This function is similar to mxGetString, except that:

• It does not require the length of the string as an input.

• It supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char pointer
points to. Consequently, you should typically free the string (using mxFree)
immediately after you have finished using it.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString,
mxGetString

mxAssert

3-8

3mxAssertPurpose Check assertion value for debugging purposes

C Syntax #include "matrix.h"
void mxAssert(int expr, char *error_message);

Arguments expr
Value of assertion.

error_message
Description of why assertion failed.

Description Similar to the ANSI C assert() macro, mxAssert checks the value of an
assertion, and continues execution only if the assertion holds. If expr evaluates
to logical 1 (true), mxAssert does nothing. If expr evaluates to logical 0 (false),
mxAssert prints an error to the MATLAB command window consisting of the
failed assertion’s expression, the filename and line number where the failed
assertion occurred, and the error_message string. The error_message string
allows you to specify a better description of why the assertion failed. Use an
empty string if you don’t want a description to follow the failed assertion
message.

After a failed assertion, control returns to the MATLAB command line.

Note that the MEX script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use them to
keep yourself from misusing your own code and to prevent logical errors from
propagating before they are caught; do not use assertions to prevent users of
your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can use
these checks during development and then remove them when the code works
properly, letting you use them for troubleshooting during development without
slowing down the final product.

mxAssertS

3-9

3mxAssertSPurpose Check assertion value without printing assertion text

C Syntax #include "matrix.h"
void mxAssertS(int expr, char *error_message);

Arguments expr
Value of assertion.

error_message
Description of why assertion failed.

Description Similar to mxAssert, except mxAssertS does not print the text of the failed
assertion. mxAssertS checks the value of an assertion, and continues execution
only if the assertion holds. If expr evaluates to logical 1 (true), mxAssertS does
nothing. If expr evaluates to logical 0 (false), mxAssertS prints an error to the
MATLAB command window consisting of the filename and line number where
the assertion failed and the error_message string. The error_message string
allows you to specify a better description of why the assertion failed. Use an
empty string if you don’t want a description to follow the failed assertion
message.

After a failed assertion, control returns to the MATLAB command line.

Note that the mex script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

mxCalcSingleSubscript

3-10

3mxCalcSingleSubscriptPurpose Return offset from first element to desired element

C Syntax #include <matrix.h>
int mxCalcSingleSubscript(const mxArray *array_ptr, int nsubs,
 int *subs);

Arguments array_ptr
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that array_ptr points to.

subs
An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs[0] specifies the row subscript, and the value in
subs[1] specifies the column subscript. Note that mxCalcSingleSubscript
views 0 as the first element of an mxArray, but MATLAB sees 1 as the first
element of an mxArray. For example, in MATLAB, (1,1) denotes the starting
element of a two-dimensional mxArray; however, to express the starting
element of a two-dimensional mxArray in subs, you must set subs[0] to 0 and
subs[1] to 0.

Returns The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then
mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (0,0) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

mxCalcSingleSubscript

3-11

MATLAB uses a column-major numbering scheme to represent data elements
internally. That means that MATLAB internally stores data elements from the
first column first, then data elements from the second column second, and so
on through the last column. For example, suppose you create a 4-by-2 variable.
It is helpful to visualize the data as shown below.

Although in fact, MATLAB internally represents the data as the following:

If an mxArray is N-dimensional, then MATLAB represents the data in N-major
order. For example, consider a three-dimensional array having dimensions
4-by-2-by-3. Although you can visualize the data as

A E

B F

C G

D H

A B C D E F G H

Index
0

Index
1

Index
2

Index
3

Index
4

Index
5

Index
6

Index
7

mxCalcSingleSubscript

3-12

MATLAB internally represents the data for this three-dimensional array in
the order shown below:

Avoid using mxCalcSingleSubscript to traverse the elements of an array. It is
more efficient to do this by finding the array’s starting address and then using
pointer auto-incrementing to access successive elements. For example, to find
the starting address of a numerical array, call mxGetPr or mxGetPi.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Page 1

Page 2

Page 3

mxCalloc

3-13

3mxCallocPurpose Allocate dynamic memory for an array using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxCalloc(size_t n, size_t size);

Arguments n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element. (The C sizeof operator calculates the number of
bytes per element.)

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxCalloc rather than calloc to
allocate memory. Note that mxCalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to 0.

• Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxCalloc calls the ANSI C calloc
function.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the

mxCalloc

3-14

memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call mexMakeMemoryPersistent after calling mxCalloc.
If you write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree.
mxFree deallocates the memory.

Examples See explore.c in the mex subdirectory of the examples directory, and
phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcalcsinglesubscript.c and
mxsetdimensions.c in the mx subdirectory of the examples directory.

See Also mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxMalloc, mxRealloc

mxChar

3-15

3mxCharPurpose Data type for string mxArray

C Syntax typedef Uint16 mxChar;

Description All string mxArrays store their data elements as mxChar rather than as char.
The MATLAB API defines an mxChar as a 16-bit unsigned integer.

Examples See mxmalloc.c in the mx subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory and mxcreatecharmatrixfromstr.c in the mx subdirectory
of the examples directory.

See Also mxCreateCharArray

mxClassID

3-16

3mxClassIDPurpose Integer value that identifies class of mxArray

C Syntax typedef enum {
 mxUNKNOWN_CLASS = 0,
 mxCELL_CLASS,
 mxSTRUCT_CLASS,
 mxLOGICAL_CLASS,
 mxCHAR_CLASS,
 <unused>,
 mxDOUBLE_CLASS,
 mxSINGLE_CLASS,
 mxINT8_CLASS,
 mxUINT8_CLASS,
 mxINT16_CLASS,
 mxUINT16_CLASS,
 mxINT32_CLASS,
 mxUINT32_CLASS,
 mxINT64_CLASS,
 mxUINT64_CLASS,
 mxFUNCTION_CLASS
} mxClassID;

Constants mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores Boolean elements
logical 1 (true) and logical 0 (false).

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

mxClassID

3-17

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed 64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Description Various mx calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateNumericArray

mxClearLogical (Obsolete)

3-18

3mxClearLogical (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB.

This function turns off the mxArray’s logical flag. This flag, when cleared, tells
MATLAB to treat the mxArray’s data as numeric data rather than as Boolean
data. If the logical flag is on, then MATLAB treats a 0 value as meaning false
and a nonzero value as meaning true. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

See Also mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray,
mxCreateSparseLogicalMatrix

mxComplexity

3-19

3mxComplexity Purpose Flag that specifies whether mxArray has imaginary components

C Syntax typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

Constants mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Description Various mx calls require an mxComplexity argument. You can set an mxComplex
argument to either mxREAL or mxCOMPLEX.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

mxCreateCellArray

3-20

3mxCreateCellArrayPurpose Create unpopulated N-dimensional cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellArray(int ndim, const int *dims);

Arguments ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims[0] to 5 and
dims[1] to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to NULL. To put data into a cell, call mxSetCell.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

mxCreateCellMatrix

3-21

3mxCreateCellMatrixPurpose Create unpopulated two-dimensional cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellMatrix(int m, int n);

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to NULL. To put data into cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

Examples See mxcreatecellmatrix.c in the mx subdirectory of the examples directory.

See Also mxCreateCellArray

mxCreateCharArray

3-22

3mxCreateCharArrayPurpose Create unpopulated N-dimensional string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharArray(int ndim, const int *dims);

Arguments ndim
The desired number of dimensions in the string mxArray. You must specify a
positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. The dims array must have at least ndim
elements.

Returns A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Description Call mxCreateCharArray to create an unpopulated N-dimensional string
mxArray.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

Examples See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

See Also mxCreateCharMatrixFromStrings, mxCreateString

mxCreateCharMatrixFromStrings

3-23

3mxCreateCharMatrixFromStringsPurpose Create populated two-dimensional string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(int m, const char **str);

Arguments m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the number of strings in str.

str
A pointer to a list of strings. The str array must contain at least m strings.

Returns A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates and
control returns to the MATLAB prompt. Insufficient free heap space is the
primary reason for mxCreateCharArray to be unsuccessful. Another possible
reason for failure is that str contains fewer than m strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to a string from str. The created
mxArray has dimensions m-by-max, where max is the length of the longest
string in str.

Note that string mxArrays represent their data elements as mxChar rather than
as char.

Examples See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

See Also mxCreateCharArray, mxCreateString, mxGetString

mxCreateDoubleMatrix

3-24

3mxCreateDoubleMatrixPurpose Create unpopulated two-dimensional, double-precision, floating-point mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleMatrix(int m, int n,

mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateDoubleMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array to 0. If you set
ComplexFlag to mxCOMPLEX, mxCreateDoubleMatrix also initializes each
element in the pi array to 0.

If you set ComplexFlag to mxREAL, mxCreateDoubleMatrix allocates enough
memory to hold m-by-n real elements. If you set ComplexFlag to mxCOMPLEX,
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real elements
and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

Examples See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

See Also mxCreateNumericArray, mxComplexity

mxCreateDoubleScalar

3-25

3mxCreateDoubleScalarPurpose Create scalar, double-precision array initialized to specified value

Note This function replaces mxCreateScalarDouble in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleScalar(double value);

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateDoubleScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateDoubleScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateDoubleScalar is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleScalar returns NULL.

Description Call mxCreateDoubleScalar to create a scalar double mxArray.
mxCreateDoubleScalar is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateFull (Obsolete)

3-26

3mxCreateFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxCreateDoubleMatrix

instead of

mxCreateFull

See Also mxCreateDoubleMatrix

mxCreateLogicalArray

3-27

3mxCreateLogicalArrayPurpose Create N-dimensional logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalArray(int ndim, const int *dims);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateLogicalArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. There should be ndim elements in the dims
array.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Call mxCreateLogicalArray to create an N-dimensional mxArray of logical 1
(true) and logical 0 (false) elements. After creating the mxArray,
mxCreateLogicalArray initializes all its elements to logical 0.
mxCreateLogicalArray differs from mxCreateLogicalMatrix in that the latter
can create two-dimensional arrays only.

mxCreateLogicalArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

See Also mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

mxCreateLogicalMatrix

3-28

3mxCreateLogicalMatrixPurpose Create two-dimensional, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalMatrix(int m, int n);

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateLogicalMatrix to create an m-by-n mxArray of logical 1 (true) and
logical 0 (false) elements. mxCreateLogicalMatrix initializes each element in
the array to logical 0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray.

See Also mxCreateLogicalArray, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

mxCreateLogicalScalar

3-29

3mxCreateLogicalScalarPurpose Create scalar, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalScalar(mxLogical value);

Arguments value
The desired logical value, logical 1 (true) or logical 0 (false), to which you want
to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateLogicalScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateLogicalScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateLogicalScalar is unsuccessful in a stand-alone
(nonMEX-file) application, the function returns NULL.

Description Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that can be used in place of
the following code:

pa = mxCreateLogicalMatrix(1, 1);
*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxIsLogicalScalar, mxIsLogicalScalarTrue, mxCreateLogicalMatrix,
mxCreateLogicalArray, mxGetLogicals

mxCreateNumericArray

3-30

3mxCreateNumericArrayPurpose Create unpopulated N-dimensional numeric mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateNumericArray(int ndim, const int *dims,

mxClassID class, mxComplexity ComplexFlag);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

class
The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any class
except for mxNUMERIC_CLASS, mxSTRUCT_CLASS, or mxCELL_CLASS.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data will have some
imaginary components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateNumericArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericArray also initializes all
its imaginary data elements to 0. mxCreateNumericArray differs from
mxCreateDoubleMatrix in two important respects:

mxCreateNumericArray

3-31

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

Examples See phonebook.c and doubleelement.c in the refbook subdirectory of the
examples directory. For an additional example, see mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxClassID, mxCreateDoubleMatrix, mxCreateSparse, mxCreateString,
mxComplexity

mxCreateNumericMatrix

3-32

3mxCreateNumericMatrixPurpose Create numeric matrix and initialize data elements to 0

C Syntax #include "matrix.h"
mxArray *mxCreateNumericMatrix(int m, int n, mxClassID class,

mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

class
The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any
numeric class including mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS,
mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS,
mxUINT32_CLASS, mxINT64_CLASS, and mxUINT64_CLASS.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns NULL.

Description Call mxCreateNumericMatrix to create an 2-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericMatrix initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericMatrix also initializes all
its imaginary data elements to 0. mxCreateNumericMatrix allocates dynamic
memory to store the created mxArray. When you finish using the mxArray, call
mxDestroyArray to destroy it.

mxCreateNumericMatrix

3-33

See Also mxCreateNumericArray

mxCreateScalarDouble

3-34

3mxCreateScalarDoublePurpose Create scalar, double-precision array initialized to specified value

Note This function is replaced by mxCreateDoubleScalar in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

C Syntax #include "matrix.h"
mxArray *mxCreateScalarDouble(double value);

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns NULL.

Description Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

3-35

3mxCreateSparsePurpose Create two-dimensional unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(int m, int n, int nzmax,
 mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag is mxCOMPLEX, pi arrays. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan to put into
the mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag
Set this value to mxREAL or mxCOMPLEX. If the mxArray you are creating is to
contain imaginary data, then set ComplexFlag to mxCOMPLEX. Otherwise, set
ComplexFlag to mxREAL.

Returns A pointer to the created sparse double mxArray if successful, and NULL
otherwise. The most likely reason for failure is insufficient free heap space. If
that happens, try reducing nzmax, m, or n.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray. The
returned sparse mxArray contains no sparse information and cannot be passed
as an argument to any MATLAB sparse functions. In order to make the
returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it
exists) pi array.

mxCreateSparse allocates space for:

• A pr array of length nzmax.

• A pi array of length nzmax (but only if ComplexFlag is mxCOMPLEX).

• An ir array of length nzmax.

• A jc array of length n+1.

mxCreateSparse

3-36

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetJc,
mxComplexity

mxCreateSparseLogicalMatrix

3-37

3mxCreateSparseLogicalMatrixPurpose Create unpopulated two-dimensional, sparse, logical mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparseLogicalMatrix(int m, int n, int nzmax);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparseLogicalMatrix should allocate
to hold the data. Set the value of nzmax to be greater than or equal to the
number of nonzero elements you plan to put into the mxArray, but make sure
that nzmax is less than or equal to m*n.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateSparseLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateSparseLogicalMatrix is unsuccessful when there
is not enough free heap space to create the mxArray.

Description Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of logical 1
(true) and logical 0 (false) elements. mxCreateSparseLogicalMatrix
initializes each element in the array to logical 0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its elements.

See Also mxCreateLogicalMatrix, mxCreateLogicalArray, mxCreateLogicalScalar,
mxCreateSparse, mxIsLogical

mxCreateString

3-38

3mxCreateStringPurpose Create 1-by-N string mxArray initialized to specified string

C Syntax #include "matrix.h"
mxArray *mxCreateString(const char *str);

Arguments str
The C string that is to serve as the mxArray's initial data.

Returns A pointer to the created string mxArray if successful, and NULL otherwise. The
most likely cause of failure is insufficient free heap space.

Description Use mxCreateString to create a string mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require string array
inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call mxDestroyArray.

Examples See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c and mxisclass.c in the
mx subdirectory of the examples directory.

See Also mxCreateCharMatrixFromStrings, mxCreateCharArray

mxCreateStructArray

3-39

3mxCreateStructArrayPurpose Create unpopulated N-dimensional structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructArray(int ndim, const int *dims, int nfields,

const char **field_names);

Arguments ndim
Number of dimensions. If you set ndim to be less than 2,
mxCreateNumericArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

Structure field names must begin with a letter, and are case-sensitive. The rest
of the name may contain letters, numerals, and underscore characters. Use the
namelengthmax function to determine the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in field_names.
A structure mxArray in MATLAB is conceptually identical to an array of
structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to NULL. Call mxSetField or mxSetFieldByNumber to place a non-NULL
mxArray pointer in a field.

mxCreateStructArray

3-40

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

See Also mxDestroyArray, mxSetNzmax, namelengthmax

mxCreateStructMatrix

3-41

3mxCreateStructMatrixPurpose Create unpopulated two-dimensional structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructMatrix(int m, int n, int nfields,

const char **field_names);

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

Structure field names must begin with a letter, and are case-sensitive. The rest
of the name may contain letters, numerals, and underscore characters. Use the
namelengthmax function to determine the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetFieldNumber, mxIsStruct, namelengthmax

mxDestroyArray

3-42

3mxDestroyArrayPurpose Free dynamic memory allocated by mxCreate

C Syntax #include "matrix.h"
void mxDestroyArray(mxArray *array_ptr);

Arguments array_ptr
Pointer to the mxArray that you want to free.

Description mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray's
characteristics fields (such as m and n), but also deallocates all the mxArray's
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

Examples See sincall.c in the refbook subdirectory of the examples directory.

For additional examples, see mexcallmatlab.c and mexgetarray.c in the mex
subdirectory of the examples directory; see mxisclass.c in the mx subdirectory
of the examples directory.

See Also mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

mxDuplicateArray

3-43

3mxDuplicateArrayPurpose Make deep copy of array

C Syntax #include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

Arguments in
Pointer to the mxArray that you want to copy.

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

Examples See mexget.c in the mex subdirectory of the examples directory and
phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

mxFree

3-44

3mxFreePurpose Free dynamic memory allocated by mxCalloc, mxMalloc, or mxRealloc

C Syntax #include "matrix.h"
void mxFree(void *ptr);

Arguments ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc,
mxMalloc, or mxRealloc.

Description To deallocate heap space, MATLAB applications should always call mxFree
rather than the ANSI C free function.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications.

In MEX-files, mxFree automatically

• Calls the ANSI C free function, which deallocates the contiguous heap space
that begins at address ptr.

• Removes this memory parcel from the MATLAB memory management
facility’s list of memory parcels.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

When mxFree appears in stand-alone MATLAB applications, mxFree simply
calls the ANSI C free function.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent. However, if an application calls
mexMakeMemoryPersistent, then the specified memory parcel becomes
persistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as

mxFree

3-45

soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call mexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see phonebook.c in the refbook subdirectory of the
examples directory; see explore.c and mexatexit.c in the mex subdirectory of
the examples directory; see mxcreatecharmatrixfromstr.c, mxisfinite.c,
mxmalloc.c, and mxsetdimensions.c in the mx subdirectory of the examples
directory.

See Also mxCalloc, mxDestroyArray, mxMalloc, mxRealloc, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxFreeMatrix (Obsolete)

3-46

3mxFreeMatrix (Obsolete) Compatibility This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxDestroyArray

instead of

mxFreeMatrix

See Also mxDestroyArray

mxGetCell

3-47

3mxGetCellPurpose Get contents of mxArray cell

C Syntax #include "matrix.h"
mxArray *mxGetCell(const mxArray *array_ptr, int index);

Arguments array_ptr
Pointer to a cell mxArray.

index
The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and NULL otherwise. Causes of
failure include:

• The indexed cell array element has not been populated.

• Specifying an array_ptr that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateCellArray, mxIsCell, mxSetCell

mxGetChars

3-48

3mxGetCharsPurpose Get pointer to character array data

C Syntax #include "matrix.h"
mxCHAR *mxGetChars(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first character in the mxArray. Returns NULL if the specified
array is not a character array.

Description Call mxGetChars to determine the address of the first character in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

See Also mxGetString, mxGetPr, mxGetPi, mxGetCell, mxGetField, mxGetLogicals,
mxGetScalar

mxGetClassID

3-49

3mxGetClassIDPurpose Get class of mxArray

C Syntax #include "matrix.h"
mxClassID mxGetClassID(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The class (category) of the mxArray that array_ptr points to. Classes are:

mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores the logical values 1
and 0, representing the states true and false respectively.

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxGetClassID

3-50

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed 64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Description Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a logical mxArray, then mxGetClassID returns
mxLOGICAL_CLASS.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an integer identifier and the latter returns the class as a string.

Examples See phonebook.c in the refbook subdirectory of the examples directory and
explore.c in the mex subdirectory of the examples directory.

See Also mxGetClassName

mxGetClassName

3-51

3mxGetClassNamePurpose Get class of mxArray as string

C Syntax #include "matrix.h"
const char *mxGetClassName(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The class (as a string) of array_ptr.

Description Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a logical mxArray, then mxGetClassName returns logical.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an integer identifier and the latter returns the class as a string.

Examples See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see mxisclass.c in the mx subdirectory of the examples
directory.

See Also mxGetClassID

mxGetData

3-52

3mxGetDataPurpose Get pointer to data

C Syntax #include "matrix.h"
void *mxGetData(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Description Similar to mxGetPr, except mxGetData returns a void *.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetImagData, mxGetPr

mxGetDimensions

3-53

3mxGetDimensionsPurpose Get pointer to dimensions array

C Syntax #include "matrix.h"
const int *mxGetDimensions(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension. The array is not NULL-terminated.

Description Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that array_ptr points to. Call mxGetNumberOfDimensions to get
the number of dimensions in the mxArray.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see findnz.c and phonebook.c in the refbook
subdirectory of the examples directory; see explore.c in the mex subdirectory
of the examples directory; see mxgeteps.c and mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxGetNumberOfDimensions

mxGetElementSize

3-54

3mxGetElementSizePurpose Get number of bytes required to store each data element

C Syntax #include "matrix.h"
int mxGetElementSize(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that
array_ptr points to an mxArray having an unrecognized class. If array_ptr
points to a cell mxArray or a structure mxArray, then mxGetElementSize
returns the size of a pointer (not the size of all the elements in each cell or
structure field).

Description Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the mxClassID of an mxArray is mxINT16_CLASS,
then the mxArray stores each data element as a 16-bit (2 byte) signed integer.
Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non-MATLAB routine
to manipulate data elements. For example, memcpy requires (for its third
argument) the size of the elements you intend to copy.

Examples See doubleelement.c and phonebook.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN

mxGetEps

3-55

3mxGetEpsPurpose Get value of eps

C Syntax #include "matrix.h"
double mxGetEps(void);

Returns The value of the MATLAB eps variable.

Description Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB PINV and RANK
functions use eps as a default tolerance.

Examples See mxgeteps.c in the mx subdirectory of the examples directory.

See Also mxGetInf, mxGetNaN

mxGetField

3-56

3mxGetFieldPurpose Get field value, given field name and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetField(const mxArray *array_ptr, int index,

const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray.

field_name
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified field_name, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. To
determine if array_ptr points to a structure mxArray, call mxIsStruct.

• Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 9.

• Specifying a nonexistent field_name. Call mxGetFieldNameByNumber or
mxGetFieldNumber to get existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the specified
field. In pseudo-C terminology, mxGetField returns the value at

array_ptr[index].field_name

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes field_num as its third argument, and mxGetField
takes field_name as its third argument.

mxGetField

3-57

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

mxGetFieldByNumber

3-58

3mxGetFieldByNumberPurpose Get field value, given field number and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *array_ptr, int index,

int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for more details on calculating an index.

field_number
The position of the field whose value you want to extract. The first field within
each element has a field number of 0, the second field has a field number of 1,
and so on. The last field has a field number of N-1, where N is the number of
fields.

Returns A pointer to the mxArray in the specified field for the desired element, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to is a structure mxArray.

• Specifying an index < 0 or >= the number of elements in the array.

• Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified field_number
at the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

3-59

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetFieldNameByNumber

3-60

3mxGetFieldNameByNumberPurpose Get field name, given field number in structure array

C Syntax #include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *array_ptr,

int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

field_number
The position of the desired field. For instance, to get the name of the first field,
set field_number to 0; to get the name of the second field, set field_number to
1; and so on.

Returns A pointer to the nth field name, on success. Returns NULL on failure. Common
causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

• Specifying a value of field_number greater than or equal to the number of
fields in the structure mxArray. (Remember that field_number 0 symbolizes
the first field, so index N-1 symbolizes the last field.)

Description Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop in
order to get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test. A field number other than 0, 1,
or 2 causes mxGetFieldNameByNumber to return NULL.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

mxGetFieldNameByNumber

3-61

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxIsStruct, mxSetField

mxGetFieldNumber

3-62

3mxGetFieldNumberPurpose Get field number, given field name in structure array

C Syntax #include "matrix.h"
int mxGetFieldNumber(const mxArray *array_ptr,

const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

field_name
The name of a field in the structure mxArray.

Returns The field number of the specified field_name, on success. The first field has a
field number of 0, the second field has a field number of 1, and so on. Returns
-1 on failure. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

• Specifying the field_name of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name has a field number of 0; the field billing has a field number of
1; and the field test has a field number of 2. If you call mxGetFieldNumber and
specify a field name of anything other than name, billing, or test, then
mxGetFieldNumber returns -1.

mxGetFieldNumber

3-63

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetImagData

3-64

3mxGetImagDataPurpose Get pointer to imaginary data of mxArray

C Syntax #include "matrix.h"
void *mxGetImagData(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Description Similar to mxGetPi, except it returns a void *.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetData, mxGetPi

mxGetInf

3-65

3mxGetInfPurpose Get value of infinity

C Syntax #include "matrix.h"
double mxGetInf(void);

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

Examples See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetNaN

mxGetIr

3-66

3mxGetIr Purpose Get ir array of sparse matrix

C Syntax #include "matrix.h"
int *mxGetIr(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns A pointer to the first element in the ir array, if successful, and NULL otherwise.
Possible causes of failure include:

• Specifying a full (nonsparse) mxArray.

• Specifying a NULL array_ptr. (This usually means that an earlier call to
mxCreateSparse failed.)

Description Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxsetdimensions.c and mxsetnzmax.c in the mx
subdirectory of the examples directory.

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

mxGetJc

3-67

3mxGetJc Purpose Get jc array of sparse matrix

C Syntax #include "matrix.h"
int *mxGetJc(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns A pointer to the first element in the jc array, if successful, and NULL otherwise.
The most likely cause of failure is specifying an array_ptr that points to a full
(nonsparse) mxArray.

Description Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetJc.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory.

See Also mxGetIr, mxSetIr, mxSetJc

mxGetLogicals

3-68

3mxGetLogicalsPurpose Get pointer to logical array data

C Syntax #include "matrix.h"
mxLogical *mxGetLogicals(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first logical in the mxArray. Returns NULL if the specified
array is not a logical array.

Description Call mxGetLogicals to determine the address of the first logical element in the
mxArray that array_ptr points to. Once you have the starting address, you can
access any other element in the mxArray.

See Also mxIsLogical, mxIsLogicalScalar, mxIsLogicalScalarTrue,
mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray

mxGetM

3-69

3mxGetMPurpose Get number of rows in mxArray

C Syntax #include "matrix.h"
int mxGetM(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns The number of rows in the mxArray to which array_ptr points.

Description mxGetM returns the number of rows in the specified array. The term rows
always means the first dimension of the array no matter how many dimensions
the array has. For example, if array_ptr points to a four-dimensional array
having dimensions 8-by-9-by-5-by-3, then mxGetM returns 8.

Examples See convec.c in the refbook subdirectory of the examples directory.

For additional examples, see fulltosparse.c, revord.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
mxmalloc.c and mxsetdimensions.c in the mx subdirectory of the examples
directory; see mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the
mex subdirectory of the examples directory.

See Also mxGetN, mxSetM, mxSetN

mxGetN

3-70

3mxGetNPurpose Get total number of columns in mxArray

C Syntax #include "matrix.h"
int mxGetN(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified mxArray.

If array_ptr is an N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if array_ptr points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, then mxGetN returns the value 120
(5x4x6). If the specified mxArray has more than two dimensions and you need
to know exactly how many elements are in each dimension, then call
mxGetDimensions.

If array_ptr points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

Examples See convec.c in the refbook subdirectory of the examples directory.

For additional examples,

• See fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

• See explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c in
the mex subdirectory of the examples directory.

• See mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c in
the mx subdirectory of the examples directory.

See Also mxGetM, mxGetNumberOfDimensions, mxSetM, mxSetN

mxGetName (Obsolete)

3-71

3mxGetName (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

mxGetNaN

3-72

3mxGetNaNPurpose Get value of NaN (Not-a-Number)

C Syntax #include "matrix.h"
double mxGetNaN(void);

Returns The value of NaN (Not-a-Number) on your system.

Description Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example,

• 0.0/0.0
• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.

Examples See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetInf

mxGetNumberOfDimensions

3-73

3mxGetNumberOfDimensionsPurpose Get number of dimensions in mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfDimensions(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

Examples See explore.c in the mex subdirectory of the examples directory.

For additional examples, see findnz.c, fulltosparse.c, and phonebook.c in
the refbook subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxSetM, mxSetN, mxGetDimensions

mxGetNumberOfElements

3-74

3mxGetNumberOfElementsPurpose Get number of elements in mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfElements(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Number of elements in the specified mxArray.

Description mxGetNumberOfElements tells you how many elements an array has. For
example, if the dimensions of an array are 3-by-5-by-10, then
mxGetNumberOfElements will return the number 150.

Examples See findnz.c and phonebook.c in the refbook subdirectory of the examples
directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the examples
directory.

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

mxGetNumberOfFields

3-75

3mxGetNumberOfFieldsPurpose Get number of fields in structure mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfFields(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a structure mxArray.

Returns The number of fields, on success. Returns 0 on failure. The most common cause
of failure is that array_ptr is not a structure mxArray. Call mxIsStruct to
determine if array_ptr is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field in order to set or to get field values.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory; see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxIsStruct, mxSetField

mxGetNzmax

3-76

3mxGetNzmax Purpose Get number of elements in ir, pr, and pi arrays

C Syntax #include "matrix.h"
int mxGetNzmax(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that array_ptr points to a full (nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

Examples See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

See Also mxSetNzmax

mxGetPi

3-77

3mxGetPiPurpose Get imaginary data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPi(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The imaginary data elements of the specified mxArray, on success. Returns
NULL if there is no imaginary data or if there is an error.

Description The pi field points to an array containing the imaginary data of the mxArray.
Call mxGetPi to get the contents of the pi field; that is, to get the starting
address of this imaginary data.

The best way to determine if an mxArray is purely real is to call mxIsComplex.

The imaginary parts of all input matrices to a MATLAB function are allocated
if any of the input matrices are complex.

Examples See convec.c, findnz.c, and fulltosparse.c in the refbook subdirectory of
the examples directory.

For additional examples, see explore.c and mexcallmatlab.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgetinf.c, mxisfinite.c, and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxGetPr, mxSetPi, mxSetPr

mxGetPr

3-78

3mxGetPrPurpose Get real data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPr(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first element of the real data. Returns NULL if there is no real
data.

Description Call mxGetPr to determine the starting address of the real data in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

Examples See convec.c, doubleelement.c, findnz.c, fulltosparse.c, sincall.c,
timestwo.c, timestwoalt.c, and xtimesy.c in the refbook subdirectory of the
examples directory.

See Also mxGetPi, mxSetPi, mxSetPr

mxGetScalar

3-79

3mxGetScalarPurpose Get real component of first data element in mxArray

C Syntax #include "matrix.h"
double mxGetScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray other than a cell mxArray or a structure mxArray.

Returns The value of the first real (nonimaginary) element of the mxArray. Notice that
mxGetScalar returns a double. Therefore, if real elements in the mxArray are
stored as something other than doubles, mxGetScalar automatically converts
the scalar value into a double. To preserve the original data representation of
the scalar, you must cast the return value to the desired data type.

If array_ptr points to a structure mxArray or a cell mxArray, mxGetScalar
returns 0.0.

If array_ptr points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

If array_ptr points to an empty mxArray, mxGetScalar returns an
indeterminate value.

Description Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when array_ptr points to an mxArray
containing only one element (a scalar). However, array_ptr can point to an
mxArray containing many elements. If array_ptr points to an mxArray
containing multiple elements, mxGetScalar returns the value of the first real
element. If array_ptr points to a two-dimensional mxArray, mxGetScalar
returns the value of the (1,1) element; if array_ptr points to a
three-dimensional mxArray, mxGetScalar returns the value of the (1,1,1)
element; and so on.

Examples See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

mxGetScalar

3-80

For additional examples, see mxsetdimensions.c in the mx subdirectory of the
examples directory; see mexget.c, mexlock.c and mexsettrapflag.c in the
mex subdirectory of the examples directory.

See Also mxGetM, mxGetN

mxGetString

3-81

3mxGetStringPurpose Copy string mxArray to C-style string

C Syntax #include "matrix.h"
int mxGetString(const mxArray *array_ptr, char *buf, int buflen);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

buf
The starting location into which the string should be written. mxGetString
writes the character data into buf and then terminates the string with a NULL
character (in the manner of C strings). buf can either point to dynamic or static
memory.

buflen
Maximum number of characters to read into buf. Typically, you set buflen to
1 plus the number of elements in the string mxArray to which array_ptr points.
See the mxGetM and mxGetN reference pages to find out how to get the number
of elements.

Note Users of multibyte character sets should be aware that MATLAB packs
multibyte characters into an mxChar (16-bit unsigned integer). When
allocating space for the return string, to avoid possible truncation you should
set

 buflen = (mxGetM(prhs[0]) * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

Returns 0 on success, and 1 on failure. Possible reasons for failure include:

• Specifying an mxArray that is not a string mxArray.

• Specifying buflen with less than the number of characters needed to store
the entire mxArray pointed to by array_ptr. If this is the case, 1 is returned
and the string is truncated.

mxGetString

3-82

Description Call mxGetString to copy the character data of a string mxArray into a C-style
string. The copied C-style string starts at buf and contains no more than
buflen-1 characters. The C-style string is always terminated with a NULL
character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array.

Examples See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxmalloc.c in the mx subdirectory of the examples
directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString

mxIsCell

3-83

3mxIsCellPurpose Determine if input is cell mxArray

C Syntax #include "matrix.h"
bool mxIsCell(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns Logical 1 (true) if array_ptr points to an array having the class mxCELL_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsCell to determine if the specified array is a cell array.

Calling mxIsCell is equivalent to calling

mxGetClassID(array_ptr) == mxCELL_CLASS

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

See Also mxIsClass

mxIsChar

3-84

3mxIsCharPurpose Determine if input is string mxArray

C Syntax #include "matrix.h"
bool mxIsChar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to an array having the class mxCHAR_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsChar to determine if array_ptr points to string mxArray.

Calling mxIsChar is equivalent to calling

mxGetClassID(array_ptr) == mxCHAR_CLASS

Examples See phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcreatecharmatrixfromstr.c, mxislogical.c,
and mxmalloc.c in the mx subdirectory of the examples directory.

See Also mxIsClass, mxGetClassID

mxIsClass

3-85

3mxIsClassPurpose Determine if mxArray is member of specified class

C Syntax #include "matrix.h"
bool mxIsClass(const mxArray *array_ptr, const char *name);

Arguments array_ptr
Pointer to an array.

name
The array category that you are testing. Specify name as a string (not as an
integer identifier). You can specify any one of the following predefined
constants:

 Value of Name Corresponding Class

cell mxCELL_CLASS

char mxCHAR_CLASS

double mxDOUBLE_CLASS

function handle mxFUNCTION_CLASS

int8 mxINT8_CLASS

int16 mxINT16_CLASS

int32 mxINT32_CLASS

int64 mxINT64_CLASS

logical mxLOGICAL_CLASS

single mxSINGLE_CLASS

struct mxSTRUCT_CLASS

uint8 mxUINT8_CLASS

uint16 mxUINT16_CLASS

uint32 mxUINT32_CLASS

uint64 mxUINT64_CLASS

mxIsClass

3-86

In the table, <class_name> represents the name of a specific MATLAB custom
object.

Or, you can specify one of your own class names.

For example,

mxIsClass("double");

is equivalent to calling

mxIsDouble(array_ptr);

which is equivalent to calling

strcmp(mxGetClassName(array_ptr), "double");

Note that it is most efficient to use the mxIsDouble form.

Returns Logical 1 (true) if array_ptr points to an array having category name, and
logical 0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

Examples See mxisclass.c in the mx subdirectory of the examples directory.

See Also mxIsEmpty, mxGetClassID, mxClassID

<class_name> <class_id>

unknown mxUNKNOWN_CLASS

 Value of Name Corresponding Class

mxIsComplex

3-87

3mxIsComplexPurpose Determine if data is complex

C Syntax #include "matrix.h"
bool mxIsComplex(const mxArray *array_ptr);

Returns Logical 1 (true) if array_ptr is a numeric array containing complex data, and
logical 0 (false) otherwise. If array_ptr points to a cell array or a structure
array, then mxIsComplex returns false.

Description Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is NULL if an mxArray is purely real
and does not have any imaginary data. If an mxArray is complex, pi points to
an array of numbers.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see convec.c, phonebook.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgeteps.c, and mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxIsNumeric

mxIsDouble

3-88

3mxIsDoublePurpose Determine if mxArray represents data as double-precision, floating-point
numbers

C Syntax #include "matrix.h"
bool mxIsDouble(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as double-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB version 5, MATLAB
can store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassID(array_ptr) == mxDOUBLE_CLASS

Examples See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

For additional examples, see mexget.c, mexlock.c, mexsettrapflag.c, and
yprime.c in the mex subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and mxisfinite.c in
the mx subdirectory of the examples directory.

See Also mxIsClass, mxGetClassID

mxIsEmpty

3-89

3mxIsEmptyPurpose Determine if mxArray is empty

C Syntax #include "matrix.h"
bool mxIsEmpty(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsClass

mxIsFinite

3-90

3mxIsFinitePurpose Determine if input is finite

C Syntax #include "matrix.h"
bool mxIsFinite(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than -Inf and less than Inf.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsInf, mxIsNaN

mxIsFromGlobalWS

3-91

3mxIsFromGlobalWSPurpose Determine if mxArray was copied from MATLAB global workspace

C Syntax #include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array was copied out of the global workspace, and logical
0 (false) otherwise.

Description mxIsFromGlobalWS is useful for stand-alone MAT programs. mexIsGlobal tells
you if the pointer you pass actually points into the global workspace.

Examples See matdgns.c and matcreat.c in the eng_mat subdirectory of the examples
directory.

See Also mexIsGlobal

mxIsFull (Obsolete)

3-92

3mxIsFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 5 or later.

Use

if(!mxIsSparse(prhs[0]))

instead of

if(mxIsFull(prhs[0]))

See Also mxIsSparse

mxIsInf

3-93

3mxIsInfPurpose Determine if input is infinite

C Syntax #include "matrix.h"
bool mxIsInf(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), then mxIsInf returns false. In other
words, NaN is not equal to infinity.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsFinite, mxIsNaN

mxIsInt8

3-94

3mxIsInt8Purpose Determine if mxArray represents data as signed 8-bit integers

C Syntax #include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.

Calling mxIsInt8 is equivalent to calling

mxGetClassID(array_ptr) == mxINT8_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt16

3-95

3mxIsInt16Purpose Determine if mxArray represents data as signed 16-bit integers

C Syntax #include "matrix.h"
bool mxIsInt16(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassID(array_ptr) == mxINT16_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt32

3-96

3mxIsInt32Purpose Determine if mxArray represents data as signed 32-bit integers

C Syntax #include "matrix.h"
bool mxIsInt32(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.

Calling mxIsInt32 is equivalent to calling

mxGetClassID(array_ptr) == mxINT32_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt64

3-97

3mxIsInt64Purpose Determine if mxArray represents data as signed 64-bit integers

C Syntax #include "matrix.h"
bool mxIsInt64(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array represents its
real and imaginary data as 64-bit signed integers.

Calling mxIsInt64 is equivalent to calling

mxGetClassID(array_ptr) == mxINT64_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsLogical

3-98

3mxIsLogicalPurpose Determine if mxArray is of class mxLogical

C Syntax #include "matrix.h"
bool mxIsLogical(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, then MATLAB treats all
zeros as meaning false and all nonzero values as meaning true. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxIsClass, mxSetLogical (Obsolete)

mxIsLogicalScalar

3-99

3mxIsLogicalScalarPurpose Determine if scalar mxArray is of class mxLogical

C Syntax #include "matrix.h"
bool mxIsLogicalScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray is of class mxLogical and has 1-by-1 dimensions,
and logical 0 (false) otherwise.

Description Use mxIsLogicalScalar to determine whether MATLAB treats the scalar data
in the mxArray as logical or numerical. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalar(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1

See Also mxIsLogicalScalarTrue, mxIsLogical, mxGetLogicals, mxGetScalar

mxIsLogicalScalarTrue

3-100

3mxIsLogicalScalarTruePurpose Determine if scalar mxArray of class mxLogical is true

C Syntax #include "matrix.h"
bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the value of the mxArray's logical, scalar element is true,
and logical 0 (false) otherwise.

Description Use mxIsLogicalScalarTrue to determine whether the value of a scalar
mxArray is true or false. For additional information on the use of logical
variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalarTrue(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1 &&
mxGetLogicals(pa)[0] == true

See Also mxIsLogicalScalar, mxIsLogical, mxGetLogicals, mxGetScalar

mxIsNaN

3-101

3mxIsNaNPurpose Determine if input is NaN (Not-a-Number)

C Syntax #include "matrix.h"
bool mxIsNaN(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) use to represent an error condition or
missing data.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the refbook
subdirectory of the examples directory.

See Also mxIsFinite, mxIsInf

mxIsNumeric

3-102

3mxIsNumericPurpose Determine if mxArray is numeric

C Syntax #include "matrix.h"
bool mxIsNumeric(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array’s storage type is:

• mxDOUBLE_CLASS
• mxSINGLE_CLASS
• mxINT8_CLASS
• mxUINT8_CLASS
• mxINT16_CLASS
• mxUINT16_CLASS
• mxINT32_CLASS
• mxUINT32_CLASS
• mxINT64_CLASS
• mxUINT64_CLASS

Logical 0 (false) if the array’s storage type is:

• mxCELL_CLASS
• mxCHAR_CLASS
• mxFUNCTION_CLASS
• mxLOGICAL_CLASS
• mxSTRUCT_CLASS
• mxUNKNOWN_CLASS

Description Call mxIsNumeric to determine if the specified array contains numeric data. If
the specified array is a cell, string, or a structure, then mxIsNumeric returns
logical 0 (false). Otherwise, mxIsNumeric returns logical 1 (true).

Call mxGetClassID to determine the exact storage type.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxGetClassID

mxIsSingle

3-103

3mxIsSinglePurpose Determine if mxArray represents data as single-precision, floating-point
numbers

C Syntax #include "matrix.h"
bool mxIsSingle(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as single-precision, floating-point
numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassID(array_ptr) == mxSINGLE_CLASS

See Also mxIsClass, mxGetClassID

mxIsSparse

3-104

3mxIsSparsePurpose Determine if input is sparse mxArray

C Syntax #include "matrix.h"
bool mxIsSparse(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a sparse mxArray, and logical 0 (false)
otherwise. A false return value means that array_ptr points to a full mxArray
or that array_ptr does not point to a legal mxArray.

Description Use mxIsSparse to determine if array_ptr points to a sparse mxArray. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetIr, mxGetJc

mxIsString (Obsolete)

3-105

3mxIsString (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxIsChar

instead of

mxIsString

See Also mxChar, mxIsChar

mxIsStruct

3-106

3mxIsStructPurpose Determine if input is structure mxArray

C Syntax #include "matrix.h"
bool mxIsStruct(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a structure array, and logical 0 (false)
otherwise.

Description Use mxIsStruct to determine if array_ptr points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

3-107

3mxIsUint8Purpose Determine if mxArray represents data as unsigned 8-bit integers

C Syntax #include "matrix.h"
bool mxIsUint8(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint8 to determine whether or not the specified mxArray represents
its real and imaginary data as 8-bit unsigned integers.

Calling mxIsUint8 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT8_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint16, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint16

3-108

3mxIsUint16Purpose Determine if mxArray represents data as unsigned 16-bit integers

C Syntax #include "matrix.h"
bool mxIsUint16(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.

Calling mxIsUint16 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT16_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint32

3-109

3mxIsUint32Purpose Determine if mxArray represents data as unsigned 32-bit integers

C Syntax #include "matrix.h"
bool mxIsUint32(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.

Calling mxIsUint32 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT32_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint64

3-110

3mxIsUint64Purpose Determine if mxArray represents data as unsigned 64-bit integers

C Syntax #include "matrix.h"
bool mxIsUint64(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray represents
its real and imaginary data as 64-bit unsigned integers.

Calling mxIsUint64 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT64_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint32, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxMalloc

3-111

3mxMallocPurpose Allocate dynamic memory using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxMalloc(size_t n);

Arguments n
Number of bytes to allocate.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxMalloc rather than malloc to
allocate memory. Note that mxMalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxMalloc automatically

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxMalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxMalloc calls the ANSI C malloc
function.

By default, in a MEX-file, mxMalloc generates nonpersistent mxMalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call mexMakeMemoryPersistent after calling mxMalloc.
If you write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

mxMalloc

3-112

When you finish using the memory allocated by mxMalloc, call mxFree.
mxFree deallocates the memory.

Examples See mxmalloc.c in the mx subdirectory of the examples directory. For an
additional example, see mxsetdimensions.c in the mx subdirectory of the
examples directory.

See Also mxCalloc, mxRealloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxRealloc

3-113

3mxReallocPurpose Reallocate memory

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, size_t size);

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, mxMalloc, or mxRealloc.

size
New size of allocated memory, in bytes.

Returns A pointer to the reallocated block of memory, or NULL if size is 0. In a
stand-alone (non-MEX-file) application, if not enough memory is available to
expand the block to the given size, mxRealloc returns NULL. In a MEX-file, if
not enough memory is available to expand the block to the given size, the
MEX-file terminates and control returns to the MATLAB prompt.

Description mxRealloc changes the size of a memory block that has been allocated with
mxCalloc, mxMalloc, or mxRealloc.

If size is 0 and ptr is not NULL, mxRealloc frees the memory pointed to by ptr
and returns NULL.

If size is greater than 0 and ptr is NULL, mxRealloc behaves like mxMalloc,
allocating a new block of memory of size bytes and returning a pointer to the
new block.

Otherwise, mxRealloc changes the size of the memory block pointed to by ptr
to size bytes. The contents of the reallocated memory are unchanged up to the
smaller of the new and old sizes. The reallocated memory may be in a different
location from the original memory, so the returned pointer can be different
from ptr. If the memory location changes, mxRealloc frees the original memory
block pointed to by ptr.

In a stand-alone (non-MEX-file) application, if not enough memory is available
to expand the block to the given size, mxRealloc returns NULL and leaves the
original memory block unchanged. You must use mxFree to free the original
memory block.

mxRealloc

3-114

MATLAB maintains a list of all memory allocated by mxRealloc. By default, in
a MEX-file, mxRealloc generates nonpersistent mxRealloc data. The memory
management facility automatically deallocates the memory as soon as the
MEX-file ends.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxRealloc. If you write a MEX-file
with persistent memory, be sure to register a mexAtExit function to free
allocated memory when your MEX-file is cleared.

When you finish using the memory allocated by mxRealloc, call mxFree. mxFree
deallocates the memory.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mxMalloc

mxRemoveField

3-115

3mxRemoveFieldPurpose Remove field from structure array

C Syntax #include "matrix.h"
extern void mxRemoveField(mxArray array_ptr, int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

field_number
The number of the field you want to remove. For instance, to remove the first
field, set field_number to 0; to remove the second field, set field_number to 1;
and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

mxSetCell

3-116

3mxSetCellPurpose Set value of one cell of mxArray

C Syntax #include "matrix.h"
void mxSetCell(mxArray *array_ptr, int index, mxArray *value);

Arguments array_ptr
Pointer to a cell mxArray.

index
Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell.

Description Call mxSetCell to put the designated value into a particular cell of a cell
mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetCell before you call mxSetCell.

Examples See phonebook.c in the refbook subdirectory of the examples directory. For an
additional example, see mxcreatecellmatrix.c in the mx subdirectory of the
examples directory.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell, mxFree

mxSetClassName

3-117

3mxSetClassNamePurpose Convert structure array to MATLAB object array

C Syntax #include "matrix.h"
int mxSetClassName(mxArray *array_ptr, const char *classname);

Arguments array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS.

classname
The object class to which to convert array_ptr.

Returns 0 if successful, and nonzero otherwise.

Description mxSetClassName converts a structure array to an object array, to be saved
subsequently to a MAT-file. The object is not registered or validated by
MATLAB until it is loaded via the LOAD command. If the specified classname is
an undefined class within MATLAB, LOAD converts the object back to a simple
structure array.

See Also mxIsClass, mxGetClassID

mxSetData

3-118

3mxSetDataPurpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *array_ptr, void *data_ptr);

Arguments array_ptr
Pointer to an mxArray.

data_ptr
Pointer to data.

Description mxSetData is similar to mxSetPr, except its data_ptr argument is a void *. Use
this on numeric arrays with contents other than double.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetData before you call mxSetData.

See Also mxSetPr, mxGetData, mxFree

mxSetDimensions

3-119

3mxSetDimensionsPurpose Modify number of dimensions and size of each dimension

C Syntax #include "matrix.h"
int mxSetDimensions(mxArray *array_ptr, const int *dims, int ndim);

Arguments array_ptr
Pointer to an mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Description Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
arrays. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
arrays accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory.

mxSetDimensions

3-120

See Also mxGetNumberOfDimensions, mxSetM, mxSetN, mxRealloc

mxSetField

3-121

3mxSetFieldPurpose Set structure array field, given field name and index

C Syntax #include "matrix.h"
void mxSetField(mxArray *array_ptr, int index,

const char *field_name, mxArray *value);

Arguments array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_name
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine existing field
names.

value
Pointer to the mxArray you are assigning.

Description Use mxSetField to assign a value to the specified element of the specified field.
In pseudo-C terminology, mxSetField performs the assignment

array_ptr[index].field_name = value;

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetField

3-122

Calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetField before you call mxSetField.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber, mxFree

mxSetFieldByNumber

3-123

3mxSetFieldByNumberPurpose Set structure array field, given field number and index

C Syntax #include "matrix.h"
void mxSetFieldByNumber(mxArray *array_ptr, int index,

int field_number, mxArray *value);

Arguments array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_number
The position of the field whose value you want to extract. The first field within
each element has a field_number of 0, the second field has a field_number of
1, and so on. The last field has a field_number of N-1, where N is the number
of fields.

value
The value you are assigning.

Description Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. mxSetFieldByNumber is almost identical to mxSetField;
however, the former takes a field number as its third argument and the latter
takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetFieldByNumber

3-124

Calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetFieldByNumber before you call mxSetFieldByNumber.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.
For an additional example, see phonebook.c in the refbook subdirectory of the
examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxFree

mxSetImagData

3-125

3mxSetImagDataPurpose Set imaginary data pointer for mxArray

C Syntax #include "matrix.h"
void mxSetImagData(mxArray *array_ptr, void *pi);

Arguments array_ptr
Pointer to an mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description mxSetImagData is similar to mxSetPi, except its pi argument is a void *. Use
this on numeric arrays with contents other than double.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetImagData before you call mxSetImagData.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxSetPi, mxGetImagData, mxFree

mxSetIr

3-126

3mxSetIr Purpose Set ir array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetIr(mxArray *array_ptr, int *ir);

Arguments array_ptr
Pointer to a sparse mxArray.

ir
Pointer to the ir array. The ir array must be sorted in column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

For example, suppose you create a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements by typing

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

The pr array holds the real data for the sparse matrix, which in Sparrow is the
five 1s and the one 2. If there is any nonzero imaginary data, then it is in a pi
array.

mxSetIr

3-127

Notice how each element of the ir array is always 1 less than the row of the
corresponding nonzero element. For instance, the first nonzero element is in
row 2; therefore, the first element in ir is 1 (that is, 2-1). The second nonzero
element is in row 5; therefore, the second element in ir is 4 (5-1).

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetIr before you call mxSetIr.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory. For an
additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc, mxFree

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.

(5,1) 4 1 2 Column 1; ir is 4 because row is 5.

(3,2) 2 1 3 Column 2; ir is 2 because row is 3.

(2,3) 1 2 6 Column 3; ir is 1 because row is 2.

(5,3) 4 1 Column 3; ir is 4 because row is 5.

(6,3) 5 1 Column 3; ir is 5 because row is 6.

mxSetJc

3-128

3mxSetJcPurpose Set jc array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetJc(mxArray *array_ptr, int *jc);

Arguments array_ptr
Pointer to a sparse mxArray.

jc
Pointer to the jc array.

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array have the meanings:

• jc[j] is the index in ir, pr (and pi if it exists) of the first nonzero entry in
the jth column.

• jc[j+1]-1 is the index of the last nonzero entry in the jth column.

• jc[number of columns + 1] is equal to nnz, which is the number of nonzero
entries in the entire spare mxArray.

The number of nonzero elements in any column (denoted as column C) is

jc[C] - jc[C-1];

For example, consider a 7-by-3 sparse mxArray named Sparrow containing six
nonzero elements, created by typing

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

mxSetJc

3-129

The contents of the ir, jc, and pr arrays are:

As an example of a much sparser mxArray, consider an 8,000 element sparse
mxArray named Spacious containing only three nonzero elements. The ir, pr,
and jc arrays contain:

Subscript ir pr jc Comment

(2,1) 1 1 0 Column 1 contains two entries, at ir[0],ir[1]

(5,1) 4 1 2 Column 2 contains one entry, at ir[2]

(3,2) 2 1 3 Column 3 contains three entries, at ir[3],ir[4],
ir[5]

(2,3) 1 2 6 There are six nonzero elements.

(5,3) 4 1

(6,3) 5 1

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains zero entries

(50,3) 49 1 0 Column 2 contains one entry, at ir[0]

(64,5) 63 1 1 Column 3 contains one entry, at ir[1]

2 Column 4 contains zero entries.

2 Column 5 contains one entry, at ir[3]

3 Column 6 contains zero entries.

3 Column 7 contains zero entries.

3 Column 8 contains zero entries.

3 There are three nonzero elements.

mxSetJc

3-130

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetJc before you call mxSetJc.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetIr, mxGetJc, mxSetIr, mxFree

mxSetLogical (Obsolete)

3-131

3mxSetLogical (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB.

This function turns on an mxArray's logical flag. This flag tells MATLAB that
the array’s data is to be treated as Boolean. If the logical flag is on, then
MATLAB treats a 0 value as meaning false and a nonzero value as meaning
true. For additional information on the use of logical variables in MATLAB,
type help logical at the MATLAB prompt.

See Also mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray,
mxCreateSparseLogicalMatrix

mxSetM

3-132

3mxSetMPurpose Set number of rows in mxArray

C Syntax #include "matrix.h"
void mxSetM(mxArray *array_ptr, int m);

Arguments m
The desired number of rows.

array_ptr
Pointer to an mxArray.

Description Call mxSetM to set the number of rows in the specified mxArray. The term “rows”
means the first dimension of an mxArray, regardless of the number of
dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN, mxSetN

mxSetN

3-133

3mxSetN Purpose Set number of columns in mxArray

C Syntax #include "matrix.h"
void mxSetN(mxArray *array_ptr, int n);

Arguments array_ptr
Pointer to an mxArray.

n
The desired number of columns.

Description Call mxSetN to set the number of columns in the specified mxArray. The term
“columns” always means the second dimension of a matrix. Calling mxSetN
forces an mxArray to have two dimensions. For example, if array_ptr points to
an mxArray having three dimensions, calling mxSetN reduces the mxArray to
two dimensions.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN, mxSetM

mxSetName (Obsolete)

3-134

3mxSetName (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

Replacing mxSetName when used with mexPutArray
To copy an mxArray to a workspace, use

mexPutVariable(workspace, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
mexPutArray(array_ptr, workspace);

Replacing mxSetName when used with matPutArray
To write an mxArray to a MAT-file, use

matPutVariable(mfp, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
matPutArray(mfp, array_ptr);

Replacing mxSetName when used with engPutArray
To copy an mxArray into the workspace of a MATLAB engine, use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutArray(ep, array_ptr);

mxSetNzmax

3-135

3mxSetNzmaxPurpose Set storage space for nonzero elements

C Syntax #include "matrix.h"
void mxSetNzmax(mxArray *array_ptr, int nzmax);

Arguments array_ptr
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays. To change the size of one of these arrays:

1 Call mxCalloc, setting n to the new value of nzmax.

2 Call the ANSI C routine memcpy to copy the contents of the old array to the
new area allocated in Step 1.

3 Call mxFree to free the memory occupied by the old array.

4 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi) to
establish the new memory area as the current one.

Two ways of determining how big you should make nzmax are

• Set nzmax equal to or slightly greater than the number of nonzero elements
in a sparse mxArray. This approach conserves precious heap space.

• Make nzmax equal to the total number of elements in an mxArray. This
approach eliminates (or, at least reduces) expensive reallocations.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxSetNzmax

3-136

See Also mxGetNzmax

mxSetPi

3-137

3mxSetPiPurpose Set new imaginary data for mxArray

C Syntax #include "matrix.h"
void mxSetPi(mxArray *array_ptr, double *pi);

Arguments array_ptr
Pointer to a full (nonsparse) mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory leaks and other memory errors may result.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate functions optionally allocate heap space to hold imaginary data.
If you tell an mxCreate function to allocate heap space (for example, by setting
the ComplexFlag to mxComplex or by setting pi to a non-NULL value), then you
do not ordinarily use mxSetPi to initialize the created mxArray's imaginary
elements. Rather, you call mxSetPi to replace the initial imaginary values with
new ones.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetPi before you call mxSetPi.

Examples See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

See Also mxSetImagData, mxGetPi, mxGetPr, mxSetPr, mxFree

mxSetPr

3-138

3mxSetPrPurpose Set new real data for mxArray

C Syntax #include "matrix.h"
void mxSetPr(mxArray *array_ptr, double *pr);

Arguments array_ptr
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pr points to static memory,
then memory leaks and other memory errors may result.

Description Use mxSetPr to set the real data of the specified mxArray.

All mxCreate calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly-created
mxArray. Rather, you call mxSetPr to replace the initial real values with new
ones.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetPr before you call mxSetPr.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetPr, mxGetPi, mxSetPi, mxFree

4
MEX-Files (C)
mexAddFlops (Obsolete) Update MATLAB internal floating-point operations counter

mexAtExit Register function to be called when MEX-function cleared or
MATLAB terminates

mexCallMATLAB Call MATLAB function or user-defined M-file or MEX-file

mexErrMsgIdAndTxt Issue error message with identifier and return to MATLAB

mexErrMsgTxt Issue error message and return to MATLAB

mexEvalString Execute MATLAB command in caller’s workspace

mexFunction Entry point to C MEX-file

mexFunctionName Name of current MEX-function

mexGet Get value of Handle Graphics® property

mexGetArray (Obsolete) Use mexGetVariable

mexGetArrayPtr (Obsolete) Use mexGetVariablePtr

mexGetEps (Obsolete) Use mxGetEps

mexGetFull (Obsolete) Use mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete) Use mexGetVariablePtr

mexGetInf (Obsolete) Use mxGetInf

mexGetMatrix (Obsolete) Use mexGetVariable

mexGetMatrixPtr (Obsolete) Use mexGetVariablePtr

mexGetNaN (Obsolete) Use mxGetNaN

mexGetVariable Get copy of variable from another workspace

mexGetVariablePtr Get read-only pointer to variable from another workspace

mexIsFinite (Obsolete) Use mxIsFinite

mexIsGlobal Determine if mxArray has global scope

mexIsInf (Obsolete) Use mxIsInf

mexIsLocked Determine if MEX-file is locked

mexIsNaN (Obsolete) Use mxIsNaN

4-2

mexLock Prevent MEX-file from being cleared from memory

mexMakeArrayPersistent Make mxArray persist after MEX-file completes

mexMakeMemoryPersistent Make allocated memory persist after MEX-file completes

mexPrintf ANSI C printf-style output routine

mexPutArray (Obsolete) Use mexPutVariable

mexPutFull (Obsolete) Use mxCreateDoubleMatrix, mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete) Use mexPutVariable

mexPutVariable Copy mxArray from MEX-file to another workspace

mexSet Set value of Handle Graphics property

mexSetTrapFlag Control response of mexCallMATLAB to errors

mexUnlock Allow MEX-file to be cleared from memory

mexWarnMsgIdAndTxt Issue warning message with identifier

mexWarnMsgTxt Issue warning message

mexAddFlops (Obsolete)

4-3

4mexAddFlops (Obsolete)Compatibility This API function is obsolete and should not be used in any MATLAB program.
This function will not be available in a future version of MATLAB.

mexAtExit

4-4

4mexAtExitPurpose Register function to be called when MEX-function cleared or MATLAB termi-
nates

C Syntax #include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

Arguments ExitFcn
Pointer to function you want to run on exit.

Returns Always returns 0.

Description Use mexAtExit to register a C function to be called just before the
MEX-function is cleared or MATLAB is terminated. mexAtExit gives your
MEX-function a chance to perform tasks such as freeing persistent memory
and closing files. Typically, the named ExitFcn performs tasks like closing
streams or sockets.

Each MEX-function can register only one active exit function at a time. If you
call mexAtExit more than once, MATLAB uses the ExitFcn from the more
recent mexAtExit call as the exit function.

If a MEX-function is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

See Also mexLock, mexUnlock

mexCallMATLAB

4-5

4mexCallMATLABPurpose Call MATLAB function or user-defined M-file or MEX-file

C Syntax #include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

 mxArray *prhs[], const char *command_name);

Arguments nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs
Pointer to an array of mxArrays. The called command puts pointers to the
resultant mxArrays into plhs. Note that the called command allocates dynamic
memory to store the resultant mxArrays. By default, MATLAB automatically
deallocates this dynamic memory when you clear the MEX-file. However, if
heap space is at a premium, you may want to call mxDestroyArray as soon as
you are finished with the mxArrays that plhs points to.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Pointer to an array of input arguments.

command_name
Character string containing the name of the MATLAB built-in, operator,
M-file, or MEX-file that you are calling. If command_name is an operator, just
place the operator inside a pair of single quotes; for example, '+'.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexCallMATLAB to invoke internal MATLAB numeric functions, MATLAB
operators, M-files, or other MEX-files. See mexFunction for a complete
description of the arguments.

By default, if command_name detects an error, MATLAB terminates the
MEX-file and returns control to the MATLAB prompt. If you want a different
error behavior, turn on the trap flag by calling mexSetTrapFlag.

mexCallMATLAB

4-6

Note that it is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two variables
but only assigns one of them a value,

function [a,b]=foo(c)
a=2*c;

you get this warning message in MATLAB:

Warning: One or more output arguments not assigned during call to
'foo'.

MATLAB assigns output b to an empty matrix. If you then call foo using
mexCallMATLAB, the unassigned output variable is given type
mxUNKNOWN_CLASS.

Examples See mexcallmatlab.c in the mex subdirectory of the examples directory.

For additional examples, see sincall.c in the refbook subdirectory of the
examples directory; see mexevalstring.c and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcreatecellmatrix.c and
mxisclass.c in the mx subdirectory of the examples directory.

See Also mexFunction, mexSetTrapFlag

mexErrMsgIdAndTxt

4-7

4mexErrMsgIdAndTxtPurpose Issue error message with identifier and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgIdAndTxt(const char *identifier,

const char *error_msg, ...);

Arguments identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

error_msg
String containing the error message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

...
Any additional arguments needed to translate formatting conversion
characters used in error_msg. Each conversion character in error_msg is
converted to one of these values.

Description Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgIdAndTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgIdAndTxt, you may have a
memory management compatibility problem. For more information, see
“Memory Management Compatibility Issues” in the External Interfaces
documentation.

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

4-8

4mexErrMsgTxtPurpose Issue error message and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgTxt(const char *error_msg);

Arguments error_msg
String containing the error message to be displayed.

Description Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke the function registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgTxt, you may have a memory
management compatibility problem. For more information, see Memory
Management Compatibility Issues.

Examples See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory of the
examples directory.

See Also mexErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

mexEvalString

4-9

4mexEvalStringPurpose Execute MATLAB command in workspace of caller

C Syntax #include "mex.h"
int mexEvalString(const char *command);

Arguments command
A string containing the MATLAB command to execute.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace of the
caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command string
must already be current variables of the caller’s workspace.

Examples See mexevalstring.c in the mex subdirectory of the examples directory.

See Also mexCallMATLAB

mexFunction

4-10

4mexFunctionPurpose Entry point to C MEX-file

C Syntax #include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
 const mxArray *prhs[]);

Arguments nlhs
MATLAB sets nlhs with the number of expected mxArrays.

plhs
MATLAB sets plhs to a pointer to an array of NULL pointers.

nrhs
MATLAB sets nrhs to the number of input mxArrays.

prhs
MATLAB sets prhs to a pointer to an array of input mxArrays. These mxArrays
are declared as constant; they are read only and should not be modified by
your MEX-file. Changing the data in these mxArrays may produce undesired
side effects.

Description mexFunction is not a routine you call. Rather, mexFunction is the generic name
of the function entry point that must exist in every C source MEX-file. When
you invoke a MEX-function, MATLAB finds and loads the corresponding
MEX-file of the same name. MATLAB then searches for a symbol named
mexFunction within the MEX-file. If it finds one, it calls the MEX-function
using the address of the mexFunction symbol. If MATLAB cannot find a routine
named mexFunction inside the MEX-file, it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,...] = fun(d,e,f,...)

where the denotes more items of the same format. The a,b,c... are left-hand
side arguments and the d,e,f... are right-hand side arguments. The
arguments nlhs and nrhs contain the number of left-hand side and right-hand
side arguments, respectively, with which the MEX-function is called. prhs is a
pointer to a length nrhs array of pointers to the right-hand side mxArrays. plhs

mexFunction

4-11

is a pointer to a length nlhs array where your C function must put pointers for
the returned left-hand side mxArrays.

Examples See mexfunction.c in the mex subdirectory of the examples directory.

mexFunctionName

4-12

4mexFunctionNamePurpose Gives name of current MEX-function

C Syntax #include "mex.h"
const char *mexFunctionName(void);

Arguments none

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

mexGet

4-13

4mexGetPurpose Get value of specified Handle Graphics® property

C Syntax #include "mex.h"
const mxArray *mexGet(double handle, const char *property);

Arguments handle
Handle to a particular graphics object.

property
A Handle Graphics property.

Returns The value of the specified property in the specified graphics object on success.
Returns NULL on failure. The return argument from mexGet is declared as
constant, meaning that it is read only and should not be modified. Changing
the data in these mxArrays may produce undesired side effects.

Description Call mexGet to get the value of the property of a certain graphics object. mexGet
is the API equivalent of the MATLAB get function. To set a graphics property
value, call mexSet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexSet

mexGetArray (Obsolete)

4-14

4mexGetArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariable(workspace, var_name);

instead of

mexGetArray(var_name, workspace);

See Also mexGetVariable

mexGetArrayPtr (Obsolete)

4-15

4mexGetArrayPtr (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariablePtr(workspace, var_name);

instead of

mexGetArrayPtr(var_name, workspace);

See Also mexGetVariable

mexGetEps (Obsolete)

4-16

4mexGetEps (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

eps = mxGetEps();

instead of

eps = mexGetEps();

See Also mxGetEps

mexGetFull (Obsolete)

4-17

4mexGetFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = mexGetVariable("caller", name);
m = mxGetM(array_ptr);
n = mxGetN(array_ptr);
pr = mxGetPr(array_ptr);
pi = mxGetPi(array_ptr);

instead of

mexGetFull(name, m, n, pr, pi);

See Also mexGetVariable, mxGetPr, mxGetPi

mexGetGlobal (Obsolete)

4-18

4mexGetGlobal (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariablePtr("global", name);

instead of

mexGetGlobal(name);

See Also mexGetVariable, mxGetName (Obsolete), mxGetPr, mxGetPi

mexGetInf (Obsolete)

4-19

4mexGetInf (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

inf = mxGetInf();

instead of

inf = mexGetInf();

See Also mxGetInf

mexGetMatrix (Obsolete)

4-20

4mexGetMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariable("caller", name);

instead of

mexGetMatrix(name);

See Also mexGetVariable

mexGetMatrixPtr (Obsolete)

4-21

4mexGetMatrixPtr (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariablePtr("caller", name);

instead of

mexGetMatrixPtr(name);

See Also mexGetVariablePtr

mexGetNaN (Obsolete)

4-22

4mexGetNaN (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

NaN = mxGetNaN();

instead of

NaN = mexGetNaN();

See Also mxGetNaN

mexGetVariable

4-23

4mexGetVariablePurpose Get copy of variable from specified workspace

C Syntax #include "mex.h"
mxArray *mexGetVariable(const char *workspace, const char

*var_name);

Arguments workspace
Specifies where mexGetVariable should search in order to find array,
var_name. The possible values are

var_name
Name of the variable to copy.

Returns A copy of the variable on success. Returns NULL on failure. A common cause of
failure is specifying a variable that is not currently in the workspace. Perhaps
the variable was in the workspace at one time but has since been cleared.

Description Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace
with mexPutVariable.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariablePtr, mexPutVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexGetVariablePtr

4-24

4mexGetVariablePtrPurpose Get read-only pointer to variable from another workspace

C Syntax #include "mex.h"
const mxArray *mexGetVariablePtr(const char *workspace,

const char *var_name);

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

var_name
Name of a variable in another workspace. (Note that this is a variable name,
not an mxArray pointer.)

Returns A read-only pointer to the mxArray on success. Returns NULL on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified variable,
var_name, into your MEX-file’s workspace. This command is useful for
examining an mxArray's data and characteristics. If you need to change data
or characteristics, use mexGetVariable (along with mexPutVariable) instead of
mexGetVariablePtr.

If you simply need to examine data or characteristics, mexGetVariablePtr
offers superior performance as the caller need pass only a pointer to the array.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexIsFinite (Obsolete)

4-25

4mexIsFinite (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsFinite(value);

instead of

answer = mexIsFinite(value);

See Also mxIsFinite

mexIsGlobal

4-26

4mexIsGlobalPurpose Determine if mxArray has global scope

C Syntax #include "matrix.h"
bool mexIsGlobal(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false) otherwise.

Description Use mexIsGlobal to determine if the specified mxArray has global scope.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

mexIsInf (Obsolete)

4-27

4mexIsInf (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsInf(value);

instead of

answer = mexIsInf(value);

See Also mxIsInf

mexIsLocked

4-28

4mexIsLockedPurpose Determine if MEX-file is locked

C Syntax #include "mex.h"
bool mexIsLocked(void);

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file is unlocked.

Description Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent, mexUnlock

mexIsNaN (Obsolete)

4-29

4mexIsNaN (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsNaN(value);

instead of

answer = mexIsNaN(value);

See Also mxIsInf

mexLock

4-30

4mexLockPurpose Prevent MEX-file from being cleared from memory

C Syntax #include "mex.h"
void mexLock(void);

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

mexMakeArrayPersistent

4-31

4mexMakeArrayPersistentPurpose Make mxArray persist after MEX-file completes

C Syntax #include "mex.h"
void mexMakeArrayPersistent(mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray created by an mxCreate* routine.

Description By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-function finishes. If you want the mxArray to persist
through multiple invocations of the MEX-function, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit to see how to register a function
that gets called when the MEX-file is cleared. See mexLock to see how to lock
your MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

4-32

4mexMakeMemoryPersistentPurpose Make allocated memory MATLAB persist after MEX-function completes

C Syntax #include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

Arguments ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

Description By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing it when
the MEX-function is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit to see how to register a
function that gets called when the MEX-function is cleared. See mexLock to
see how to lock your MEX-function so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

mexPrintf

4-33

4mexPrintfPurpose ANSI C printf-style output routine

C Syntax #include "mex.h"
int mexPrintf(const char *format, ...);

Arguments format, ...
ANSI C printf-style format string and optional arguments.

Returns The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

Description This routine prints a string on the screen and in the diary (if the diary is in
use). It provides a callback to the standard C printf routine already linked
inside MATLAB, and avoids linking the entire stdio library into your
MEX-file.

In a MEX-file, you must call mexPrintf instead of printf.

Examples See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see phonebook.c in the refbook subdirectory of the
examples directory.

See Also mexErrMsgTxt, mexWarnMsgTxt

mexPutArray (Obsolete)

4-34

4mexPutArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexPutVariable(workspace, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
mexPutArray(array_ptr, workspace);

See Also mexPutVariable

mexPutFull (Obsolete)

4-35

4mexPutFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = mxCreateDoubleMatrix(m, n, mxREAL/mxCOMPLEX);
mxSetPr(array_ptr, pr);
mxSetPi(array_ptr, pi);
mexPutVariable("caller", name, array_ptr);

instead of

mexPutFull(name, m, n, pr, pi);

See Also mxSetM, mxSetN, mxSetPr, mxSetPi, mexPutVariable

mexPutMatrix (Obsolete)

4-36

4mexPutMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexPutVariable("caller", var_name, array_ptr);

instead of

mexPutMatrix(matrix_ptr);

See Also mexPutVariable

mexPutVariable

4-37

4mexPutVariablePurpose Copy mxArray from MEX-function into specified workspace

C Syntax #include "mex.h"
int mexPutVariable(const char *workspace, const char *var_name,

const mxArray *array_ptr);

Arguments workspace
Specifies the scope of the array that you are copying. The possible values are

var_name
Name given to the mxArray in the workspace.

array_ptr
Pointer to the mxArray.

Returns 0 on success; 1 on failure. A possible cause of failure is that array_ptr is NULL.

Description Call mexPutVariable to copy the mxArray, at pointer array_ptr, from your
MEX-function into the specified workspace. MATLAB gives the name,
var_name, to the copied mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-functions.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", array_ptr)

base Copy mxArray to the base workspace

caller Copy mxArray to the caller’s workspace

global Copy mxArray to the list of global variables

mexPutVariable

4-38

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariable

mexSet

4-39

4mexSetPurpose Set value of specified Handle Graphics property

C Syntax #include "mex.h"
int mexSet(double handle, const char *property,
 mxArray *value);

Arguments handle
Handle to a particular graphics object.

property
String naming a Handle Graphics property.

value
Pointer to an mxArray holding the new value to assign to the property.

Returns 0 on success; 1 on failure. Possible causes of failure include:

• Specifying a nonexistent property.

• Specifying an illegal value for that property. For example, specifying a string
value for a numerical property.

Description Call mexSet to set the value of the property of a certain graphics object. mexSet
is the API equivalent of the MATLAB set function. To get the value of a
graphics property, call mexGet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexGet

mexSetTrapFlag

4-40

4mexSetTrapFlagPurpose Control response of mexCallMATLAB to errors

C Syntax #include "mex.h"
void mexSetTrapFlag(int trap_flag);

Arguments trap_flag
Control flag. Currently, the only legal values are:

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trap_flag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trap_flag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does not
automatically terminate the MEX-file. Rather, MATLAB returns control to the
line in the MEX-file immediately following the call to mexCallMATLAB. The
MEX-file is then responsible for taking an appropriate response to the error.

If you call mexSetTrapFlag, the value of the trap_flag you set remains in effect
until the next call to mexSetTrapFlag within that MEX-file or, if there are no
more calls to mexSetTrapFlag, until the MEX-file exits. If a routine defined in
a MEX-file calls another MEX-file:

1 The current value of the trap_flag in the first MEX-file is saved.

2 The second MEX-file is called with the trap_flag initialized to 0 within that
file.

3 When the second MEX-file exits, the saved value of the trap_flag in the
first MEX-file is restored within that file.

Examples See mexsettrapflag.c in the mex subdirectory of the examples directory.

See Also mexAtExit, mexErrMsgTxt

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

mexUnlock

4-41

4mexUnlockPurpose Allow MEX-file to be cleared from memory

C Syntax #include "mex.h"
void mexUnlock(void);

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexWarnMsgIdAndTxt

4-42

4mexWarnMsgIdAndTxtPurpose Issue warning message with identifier

C Syntax #include "mex.h"
void mexWarnMsgIdAndTxt(const char *identifier,

const char *warning_msg, ...);

Arguments identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

warning_msg
String containing the warning message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

...
Any additional arguments needed to translate formatting conversion
characters used in warning_msg. Each conversion character in warning_msg is
converted to one of these values.

Description Call mexWarnMsgIdAndTxt to write a warning message and its corresponding
identifier to the MATLAB window.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

See Also mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

mexWarnMsgTxt

4-43

4mexWarnMsgTxtPurpose Issue warning message

C Syntax #include "mex.h"
void mexWarnMsgTxt(const char *warning_msg);

Arguments warning_msg
String containing the warning message to be displayed.

Description mexWarnMsgTxt causes MATLAB to display the contents of warning_msg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

Examples See yprime.c in the mex subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see fulltosparse.c and revord.c in the refbook
subdirectory of the examples directory; see mxisfinite.c and mxsetnzmax.c in
the mx subdirectory of the examples directory.

See Also mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

mexWarnMsgTxt

4-44

5
MATLAB Engine (C)
engClose Quit MATLAB engine session

engEvalString Evaluate expression in string

engGetArray (Obsolete) Use engGetVariable

engGetFull (Obsolete) Use engGetVariable followed by appropriate mxGet routines

engGetMatrix (Obsolete) Use engGetVariable

engGetVariable Copy variable from engine workspace

engGetVisible Determine visibility of engine session

engOpen Start MATLAB engine session

engOpenSingleUse Start MATLAB engine session for single, nonshared use

engOutputBuffer Specify buffer for MATLAB output

engPutArray (Obsolete) Use engPutVariable

engPutFull (Obsolete) Use mxCreateDoubleMatrix and engPutVariable

engPutMatrix (Obsolete) Use engPutVariable

engPutVariable Put variables into engine workspace

engSetEvalCallback (Obsolete) Function is obsolete

engSetEvalTimeout (Obsolete) Function is obsolete

engSetVisible Show or hide engine session

engWinInit (Obsolete) Function is obsolete

engClose

5-2

5engClosePurpose Quit MATLAB engine session

C Syntax #include "engine.h"
int engClose(Engine *ep);

Arguments ep
Engine pointer.

Description This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engEvalString

5-3

5engEvalStringPurpose Evaluate expression in string

C Syntax #include "engine.h"
int engEvalString(Engine *ep, const char *string);

Arguments ep
Engine pointer.

string
String to execute.

Description engEvalString evaluates the expression contained in string for the MATLAB
engine session, ep, previously started by engOpen. It returns a nonzero value if
the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to the MATLAB stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer. To turn off output buffering, use

engOutputBuffer(ep, NULL, 0);

Under Windows on a PC, engEvalString communicates with MATLAB using
a Component Object Model (COM) interface.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engGetArray (Obsolete)

5-4

5engGetArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

array_ptr = engGetVariable(ep, var_name);

instead of

array_ptr = engGetArray(ep, var_name);

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetFull (Obsolete)

5-5

5engGetFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

engGetVariable followed by appropriate mxGet routines (mxGetM, mxGetN,
mxGetPr, mxGetPi)

instead of

engGetFull

For example,

int engGetFull(
Engine *ep, /* engine pointer */
char *name, /* full array name */
int *m, /* returned number of rows */
int *n, /* returned number of columns */
double **pr, /* returned pointer to real part */
double **pi /* returned pointer to imaginary part */
)

{
mxArray *pmat;

pmat = engGetVariable(ep, name);

if (!pmat)
return(1);

if (!mxIsDouble(pmat)) {
mxDestroyArray(pmat);
return(1);

}

*m = mxGetM(pmat);
*n = mxGetN(pmat);
*pr = mxGetPr(pmat);
*pi = mxGetPi(pmat);

engGetFull (Obsolete)

5-6

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);
mxSetPi(pmat, NULL);

mxDestroyArray(pmat);

return(0);
}

See Also engGetVariable and examples in the eng_mat subdirectory of the examples
directory

engGetMatrix (Obsolete)

5-7

5engGetMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = engGetVariable(ep, var_name);

instead of

array_ptr = engGetMatrix(ep, var_name);

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetVariable

5-8

5engGetVariablePurpose Copy variable from MATLAB engine workspace

C Syntax #include "engine.h"
mxArray *engGetVariable(Engine *ep, const char *var_name);

Arguments ep
Engine pointer.

var_name
Name of mxArray to get from MATLAB.

Description engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or NULL if the attempt fails. engGetVariable fails if the named
variable does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

See Also engPutVariable

engGetVisible

5-9

5engGetVisiblePurpose Determine visibility of MATLAB engine session

C Syntax #include "engine.h"
int engGetVisible(Engine *ep, bool *value);

Arguments ep
Engine pointer.

value
Pointer to value returned from engGetVisible.

Description Windows Only
engGetVisible returns the current visibility setting for MATLAB engine
session, ep. A visible engine session runs in a window on the Windows desktop,
thus making the engine available for user interaction. An invisible session is
hidden from the user by removing it from the desktop.

engGetVisible returns 0 on success, and 1 otherwise.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engSetVisible

engOpen

5-10

5engOpenPurpose Start MATLAB engine session

C Syntax #include "engine.h"
Engine *engOpen(const char *startcmd);

Arguments startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

Returns A pointer to an engine handle.

Description This routine allows you to start a MATLAB process for the purpose of using
MATLAB as a computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
the string startcmd, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails.

On UNIX systems, if startcmd is NULL or the empty string, engOpen starts
MATLAB on the current host using the command matlab. If startcmd is a
hostname, engOpen starts MATLAB on the designated host by embedding the
specified hostname string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or nonalphanumeric
characters), the string is executed literally to start MATLAB.

On UNIX systems, engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
MATLAB (parent) to two file descriptors in the engine program (child).

3 Executes a command to run MATLAB (rsh for remote execution).

engOpen

5-11

Under Windows on a PC, engOpen opens a COM channel to MATLAB. This
starts the MATLAB that was registered during installation. If you did not
register during installation, on the command line you can enter the command:

matlab /regserver

See “Introducing MATLAB COM Integration” for additional details.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engOpenSingleUse

5-12

5engOpenSingleUse Purpose Start MATLAB engine session for single, nonshared use

C Syntax #include "engine.h"
Engine *engOpenSingleUse(const char *startcmd, void *dcom,

int *retstatus);

Arguments startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

dcom
Reserved for future use; must be NULL.

retstatus
Return status; possible cause of failure.

Description Windows
This routine allows you to start multiple MATLAB processes for the purpose of
using MATLAB as a computational engine. engOpenSingleUse starts a
MATLAB process, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails. engOpenSingleUse starts a new MATLAB
process each time it is called.

engOpenSingleUse opens a COM channel to MATLAB. This starts the
MATLAB that was registered during installation. If you did not register during
installation, on the command line you can enter the command:

matlab /regserver

engOpenSingleUse allows single-use instances of a MATLAB engine server.
engOpenSingleUse differs from engOpen, which allows multiple users to use the
same MATLAB engine server.

See Introducing MATLAB COM Integration for additional details.

UNIX
This routine is not supported and simply returns.

engOutputBuffer

5-13

5engOutputBufferPurpose Specify buffer for MATLAB output

C Syntax #include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

Arguments ep
Engine pointer.

p
Pointer to character buffer of length n.

n
Length of buffer p.

Description engOutputBuffer defines a character buffer for engEvalString to return any
output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p, n) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer pointed to by p.

To turn off output buffering, use engOutputBuffer(ep, NULL, 0);

Note The buffer returned by engEvalString is not guaranteed to be NULL
terminated.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engPutArray (Obsolete)

5-14

5engPutArray (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutArray(ep, array_ptr);

See Also engPutVariable, engGetVariable, and examples in the eng_mat subdirectory
of the examples directory

engPutFull (Obsolete)

5-15

5engPutFull (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mxCreateDoubleMatrix and engPutVariable

instead of

engPutFull

For example,

int engPutFull(
Engine *ep, /* engine pointer */
char *name, /* full array name */
int m, /* number of rows */
int n, /* number of columns */
double *pr, /* pointer to real part */
double *pi /* pointer to imaginary part */
)

{
mxArray *pmat;
int retval;

pmat = mxCreateDoubleMatrix(0, 0, mxCOMPLEX);

mxSetM(pmat, m);
mxSetN(pmat, n);
mxSetPr(pmat, pr);
mxSetPi(pmat, pi);

retval = engPutVariable(ep, name, pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);
mxSetPi(pmat, NULL);

mxDestroyArray(pmat);

return(retval);
}

engPutFull (Obsolete)

5-16

See Also engGetVariable, mxCreateDoubleMatrix

engPutMatrix (Obsolete)

5-17

5engPutMatrix (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutMatrix(ep, array_ptr);

See Also engPutVariable

engPutVariable

5-18

5engPutVariablePurpose Put variables into MATLAB engine workspace

C Syntax #include "engine.h"
int engPutVariable(Engine *ep, const char *var_name, const mxArray

*array_ptr);

Arguments ep
Engine pointer.

var_name
Name given to the mxArray in the engine’s workspace.

array_ptr
mxArray pointer.

Description engPutVariable writes mxArray array_ptr to the engine ep, giving it the
variable name, var_name. If the mxArray does not exist in the workspace, it is
created. If an mxArray with the same name already exists in the workspace, the
existing mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engSetEvalCallback (Obsolete)

5-19

5engSetEvalCallback (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

engSetEvalTimeout (Obsolete)

5-20

5engSetEvalTimeout (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

engSetVisible

5-21

5engSetVisiblePurpose Show or hide MATLAB engine session

C Syntax #include "engine.h"
int engSetVisible(Engine *ep, bool value);

Arguments ep
Engine pointer.

value
Value to set the Visible property to. Set value to 1 to make the engine window
visible, or to 0 to make it invisible.

Description Windows Only
engSetVisible makes the window for the MATLAB engine session, ep, either
visible or invisible on the Windows desktop. You can use this function to enable
or disable user interaction with the MATLAB engine session.

engSetVisible returns 0 on success, and 1 otherwise.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engGetVisible

engWinInit (Obsolete)

5-22

5engWinInit (Obsolete)Compatibility This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function is not necessary in MATLAB
5 or later engine programs.

6
MAT-File Access (Fortran)
matClose Close MAT-file

matDeleteArray (Obsolete) Use matDeleteVariable

matDeleteMatrix (Obsolete) Use matDeleteVariable

matDeleteVariable Delete named mxArray from MAT-file

matGetArray (Obsolete) Use matGetVariable

matGetArrayHeader (Obsolete) Use matGetVariableInfo

matGetDir Get directory of mxArrays in MAT-file

matGetFull (Obsolete) Use matGetVariable followed by the appropriate mxGet
routines

matGetMatrix (Obsolete) Use matGetVariable

matGetNextArray (Obsolete) Use matGetNextVariable

matGetNextArrayHeader (Obsolete) Use matGetNextVariableInfo

matGetNextMatrix (Obsolete) Use matGetNextVariable

matGetNextVariable Read next mxArray from MAT-file

matGetNextVariableInfo Load array header information only

matGetString (Obsolete) Use matGetVariable and mxGetString

matGetVariable Read mxArray from MAT-file

matGetVariableInfo Load array header information only

matOpen Open MAT-file

matPutArray (Obsolete) Use matPutVariable

matPutArrayAsGlobal (Obsolete) Use matPutVariableAsGlobal

matPutFull (Obsolete) Use mxCreateDoubleMatrix and matPutVariable

matPutMatrix (Obsolete) Use matPutVariable

matPutString (Obsolete) Use mxCreateString and matPutArray

matPutVariable Write mxArrays to MAT-files

matPutVariableAsGlobal Put mxArrays into MAT-files

matClose

6-2

6matClosePurpose Close MAT-file

Fortran Syntax integer*4 function matClose(mfp)
integer*4 mfp

Arguments mfp
Pointer to MAT-file information.

Description matClose closes the MAT-file associated with mfp. It returns -1 for a write
error, and 0 if successful.

Examples See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use this MAT-file routine
in a Fortran program.

matDeleteArray (Obsolete)

6-3

6matDeleteArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

See Also matDeleteVariable

matDeleteMatrix (Obsolete)

6-4

6matDeleteMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

See Also matDeleteVariable

matDeleteVariable

6-5

6matDeleteVariablePurpose Delete named mxArray from MAT-file

Fortran Syntax integer*4 function matDeleteVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

Description matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. The function returns 0 if successful, and nonzero otherwise.

matGetArray (Obsolete)

6-6

6matGetArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

See Also matGetVariable

matGetArrayHeader (Obsolete)

6-7

6matGetArrayHeader (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariableInfo instead.

See Also matGetVariableInfo

matGetDir

6-8

6matGetDirPurpose Get directory of mxArrays from MAT-file

Fortran Syntax integer*4 function matGetDir(mfp, num)
integer*4 mfp, num

Arguments mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

Description This routine enables you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
names of the mxArrays in the MAT-file pointed to by mfp. The length of the
internal array (number of mxArrays in the MAT-file) is placed into num. The
internal array is allocated using a single mxCalloc. Use mxFree to free the
array when you are finished with it.

matGetDir returns 0 and sets num to a negative number if it fails. If num is zero,
mfp contains no mxArrays.

MATLAB variable names can be up to length 32.

Examples See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

matGetFull (Obsolete)

6-9

6matGetFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = matGetVariable(mfp, name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)

mxDestroyArray(pm)

instead of

matGetFull(mfp, name, m, n, pr, pi)

See Also matGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

matGetMatrix (Obsolete)

6-10

6matGetMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

See Also matGetVariable

matGetNextArray (Obsolete)

6-11

6matGetNextArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

See Also matGetNextVariable

matGetNextArrayHeader (Obsolete)

6-12

6matGetNextArrayHeader (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariableInfo instead.

See Also matGetNextVariableInfo

matGetNextMatrix (Obsolete)

6-13

6matGetNextMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

See Also matGetNextVariable

matGetNextVariable

6-14

6matGetNextVariablePurpose Read next mxArray from MAT-file

Fortran Syntax integer*4 function matGetNextVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns 0 when the end-of-file is reached or if there is an
error condition.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

matGetNextVariableInfo

6-15

6matGetNextVariableInfoPurpose Load array header information only

Fortran Syntax integer*4 function matGetNextVariableInfo(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to
MATLAB or saved to MAT-files.

matGetString (Obsolete)

6-16

6matGetString (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = matGetVariable(mfp, name)
mxGetString(pm, str, strlen)

instead of

matGetString(mfp, name, str, strlen)

See Also matGetVariable, mxGetString

matGetVariable

6-17

6matGetVariablePurpose Read mxArrays from MAT-files

Fortran Syntax integer*4 function matGetVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

Description This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or 0 if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

matGetVariableInfo

6-18

6matGetVariableInfoPurpose Load array header information only

Fortran Syntax integer*4 function matGetVariableInfo(mfp, name);
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray.

Description matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells/structures
through their leaf elements, but does not include pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetVariableInfo sets them to -1 instead. These headers
are for informational use only and should never be passed back to MATLAB or
saved to MAT-files.

matOpen

6-19

6matOpenPurpose Open MAT-file

Fortran Syntax integer*4 function matOpen(filename, mode)
integer*4 mfp
character*(*) filename, mode

Arguments filename
Name of file to open.

mode
File opening mode. Legal values for mode are:

mfp
Pointer to MAT-file information.

r Open file for reading only. Determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Open file for update, both reading and writing, but does not
create the file if the file does not exist (equivalent to the r+
mode of fopen). Determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Open file for writing only. Deletes previous contents, if any.

w4 Create a Level 4 MAT-file, compatible with MATLAB Versions 4
and earlier.

wL Open file for writing character data using the default character
set for your system. The resulting MAT-file can be read with
MATLAB version 6 or 6.5.
If you do not use the wL mode switch, MATLAB writes
character data to the MAT-file using Unicode character
encoding by default.

wz Open file for writing compressed data.

matOpen

6-20

Description This routine allows you to open MAT-files for reading and writing.

matOpen opens the named file and returns a file handle, or 0 if the open fails.

Examples See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a Fortran program.

matPutArray (Obsolete)

6-21

6matPutArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

matPutVariable(mfp, name, pm)

instead of

mxSetName(pm, name);
matPutArray(pm, mfp);

See Also matPutVariable

matPutArrayAsGlobal (Obsolete)

6-22

6matPutArrayAsGlobal (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariableAsGlobal instead.

See Also matPutVariableAsGlobal

matPutFull (Obsolete)

6-23

6matPutFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
matPutVariable(mfp, name, pm)

mxDestroyArray(pm)

instead of

matPutFull(mfp, name, m, n, pr, pi)

See Also mxCreateDoubleMatrix, mxSetPr, mxSetPi, matPutVariable, mxDestroyArray

matPutMatrix (Obsolete)

6-24

6matPutMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariable instead.

See Also matPutVariable

matPutString (Obsolete)

6-25

6matPutString (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateString(str)
matPutVariable(mfp, name, pm)
mxDestroyArray(pm)

instead of

matPutString(mfp, name, str)

See Also mxCreateString, matPutVariable, mxDestroyArray

matPutVariable

6-26

6matPutVariablePurpose Write mxArrays to MAT-files

Fortran Syntax integer*4 function matPutVariable(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs.

matPutVariableAsGlobal

6-27

6matPutVariableAsGlobalPurpose Put mxArrays into MAT-files as originating from global workspace

Fortran Syntax integer*4 function matPutVariableAsGlobal(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.

matPutVariableAsGlobal

6-28

7
MX Array Manipulation
(Fortran)
mxAddField Add field to structure array

mxCalcSingleSubscript Return offset from first element to desired element

mxCalloc Allocate dynamic memory using MATLAB memory manager

mxClassIDFromClassName Get identifier that corresponds to class

mxClearLogical (Obsolete) Clear logical flag

mxCopyCharacterToPtr Copy character values from Fortran array to pointer array

mxCopyComplex8ToPtr Copy COMPLEX*8 values from Fortran array to pointer array

mxCopyComplex16ToPtr Copy COMPLEX*16 values from Fortran array to pointer array

mxCopyInteger1ToPtr Copy INTEGER*1 values from Fortran array to pointer array

mxCopyInteger2ToPtr Copy INTEGER*2 values from Fortran array to pointer array

mxCopyInteger4ToPtr Copy INTEGER*4 values from Fortran array to pointer array

mxCopyPtrToCharacter Copy character values from pointer array to Fortran array

mxCopyPtrToComplex8 Copy COMPLEX*8 values from pointer array to Fortran array

mxCopyPtrToComplex16 Copy COMPLEX*16 values from pointer array to Fortran array

mxCopyPtrToInteger1 Copy INTEGER*1 values from pointer array to Fortran array

mxCopyPtrToInteger2 Copy INTEGER*2 values from pointer array to Fortran array

mxCopyPtrToInteger4 Copy INTEGER*4 values from pointer array to Fortran array

mxCopyPtrToPtrArray Copy pointer values from pointer array to Fortran array

mxCopyPtrToReal4 Copy REAL*4 values from pointer array to Fortran array

mxCopyPtrToReal8 Copy REAL*8 values from pointer array to Fortran array

mxCopyReal4ToPtr Copy REAL*4 values from Fortran array to pointer array

mxCopyReal8ToPtr Copy REAL*8 values from Fortran array to pointer array

mxCreateCellArray Create unpopulated N-dimensional cell mxArray

mxCreateCellMatrix Create unpopulated two-dimensional cell mxArray

7-2

mxCreateCharArray Create unpopulated N-dimensional string mxArray

mxCreateCharMatrixFromStrings Create populated two-dimensional string mxArray

mxCreateDoubleMatrix Create unpopulated two-dimensional, double-precision,
floating-point mxArray

mxCreateFull (Obsolete) Create unpopulated two-dimensional mxArray

mxCreateNumericArray Create unpopulated N-dimensional numeric mxArray

mxCreateNumericMatrix Create numeric matrix and initialize data elements to 0

mxCreateScalarDouble Create scalar, double-precision array initialized to specified
value

mxCreateSparse Create two-dimensional unpopulated sparse mxArray

mxCreateString Create 1-by-n character array initialized to specified string

mxCreateStructArray Create unpopulated N-dimensional structure mxArray

mxCreateStructMatrix Create unpopulated two-dimensional structure mxArray

mxDestroyArray Free dynamic memory allocated by mxCreate

mxDuplicateArray Make deep copy of array

mxFree Free dynamic memory allocated by mxCalloc

mxFreeMatrix (Obsolete) Free dynamic memory allocated by mxCreateFull and
mxCreateSparse

mxGetCell Get cell's contents

mxGetClassID Get mxArray's class

mxGetClassName Get mxArray's class

mxGetData Get pointer to data

mxGetDimensions Get pointer to dimensions array

mxGetElementSize Get number of bytes required to store each data element

mxGetEps Get value of eps

mxGetField Get field value, given field name and index in structure array

7-3

mxGetFieldByNumber Get field value, given field number and index in structure
array

mxGetFieldNameByNumber Get field name, given field number in structure array

mxGetFieldNumber Get field number, given field name in structure array

mxGetImagData Get pointer to imaginary data of mxArray

mxGetInf Get value of infinity

mxGetIr Get ir array

mxGetJc Get jc array

mxGetM Get number of rows

mxGetN Get total number of columns

mxGetName (Obsolete) Get name of specified mxArray

mxGetNaN Get the value of NaN

mxGetNumberOfDimensions Get number of dimensions

mxGetNumberOfElements Get number of elements in array

mxGetNumberOfFields Get number of fields in structure mxArray

mxGetNzmax Get number of elements in ir, pr, and pi arrays

mxGetPi Get imaginary data elements of mxArray

mxGetPr Get real data elements of mxArray

mxGetScalar Get real component of first data element in mxArray

mxGetString Create character array from mxArray

mxIsCell Determine if input is cell mxArray

mxIsChar Determine if input is string mxArray

mxIsClass Determine if mxArray is member of specified class

mxIsComplex Determine if mxArray is complex

mxIsDouble Determine if mxArray is of type double

mxIsEmpty Determine if mxArray is empty

mxIsFinite Determine if value is finite

7-4

mxIsFromGlobalWS Determine if mxArray copied from MATLAB global workspace

mxIsFull (Obsolete) Determine if mxArray is full

mxIsInf Determine if value is infinite

mxIsInt8 Determine if input is mxArray of signed 8-bit integers

mxIsInt16 Determine if input is mxArray of signed 16-bit integers

mxIsInt32 Determine if input is mxArray of signed 32-bit integers

mxIsLogical Determine if mxArray is Boolean

mxIsNaN Determine if input is NaN

mxIsNumeric Determine if mxArray contains numeric data

mxIsSingle Determine if mxArray represents data as single-precision,
floating-point numbers

mxIsSparse Determine if mxArray is sparse

mxIsString (Obsolete) Determine if mxArray contains character array

mxIsStruct Determine if input is mxArray structure

mxIsUint8 Determine if input is mxArray of unsigned 8-bit integers

mxIsUint16 Determine if input is mxArray of unsigned 16-bit integers

mxIsUint32 Determine if input is mxArray of unsigned 32-bit integers

mxMalloc Allocate dynamic memory using the MATLAB memory
manager

mxRealloc Reallocate memory

mxRemoveField Remove field from structure array

mxSetCell Set value of one cell

mxSetData Set pointer to data

mxSetDimensions Modify number/size of dimensions

mxSetField Set field value of structure array, given field name/index

mxSetFieldByNumber Set field value in structure array, given field number/index

mxSetImagData Set imaginary data pointer for mxArray

7-5

mxSetIr Set ir array of sparse mxArray

mxSetJc Set jc array of sparse mxArray

mxSetLogical (Obsolete) Set logical flag

mxSetM Set number of rows

mxSetN Set number of columns

mxSetName (Obsolete) Set name of mxArray

mxSetNzmax Set storage space for nonzero elements

mxSetPi Set new imaginary data for mxArray

mxSetPr Set new real data for mxArray

mxAddField

7-6

7mxAddFieldPurpose Add field to structure array

Fortran Syntax integer*4 function mxAddField(pm, fieldname)
integer*4 pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of the field you want to add.

Returns Field number on success, or 0 if inputs are invalid or an out-of-memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the
individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

mxCalcSingleSubscript

7-7

7mxCalcSingleSubscriptPurpose Return offset from first element to desired element

Fortran Syntax integer*4 function mxCalcSingleSubscript(pm, nsubs, subs)
integer*4 pm, nsubs, subs

Arguments pm
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that pm points to.

subs
An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs(1) specifies the row subscript, and the value in
subs(2) specifies the column subscript. Use 1-based indexing to specify the
desired array element. For example, to express the starting element of a
two-dimensional mxArray in subs, set subs(1) to 1 and subs(2) to 1.

Returns The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then
mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (1,1) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

Use mxCalcSingleSubscript with functions that interact with
multidimensional cells and structures. mxGetCell and mxSetCell are two such
functions.

See Also mxGetCell, mxSetCell

mxCalloc

7-8

7mxCallocPurpose Allocate dynamic memory for an array using MATLAB memory manager

Fortran Syntax integer*4 function mxCalloc(n, size)
integer*4 n, size

Arguments n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. When you finish using the memory
allocated by mxCalloc, call mxFree. mxFree deallocates the memory.

mxCalloc works differently in MEX-files than in stand-alone MATLAB
applications. In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to 0.

• Registers the returned heap space with the MATLAB memory management
facility.

In stand-alone MATLAB applications, the MATLAB memory manager is not
used.

See Also mxFree, mxMalloc, mxRealloc

mxClassIDFromClassName

7-9

7mxClassIDFromClassNamePurpose Get identifier that corresponds to class

Fortran Syntax integer*4 function mxClassIDFromClassName(classname)
character*(*) classname

Arguments classname
A character array specifying a MATLAB class name. Use one of the strings
from the table below.

Returns A numeric identifier used internally by MATLAB to represent the MATLAB
class, classname. Returns 0 if classname is not a recognized MATLAB class.

Description Use mxClassIDFromClassName to obtain an identifier for any class that is
recognized by MATLAB. This function is most commonly used to provide a
classid argument to mxCreateNumericArray and mxCreateNumericMatrix.

Valid choices for classname are shown below. MATLAB returns 0 if classname
is unrecognized.

See Also mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix

cell char double function_handle

int8 int16 int32 logical

object single struct uint8

uint16 uint32

mxClearLogical (Obsolete)

7-10

7mxClearLogical (Obsolete)Compatibility As of MATLAB version 6.5, mxClearLogical is obsolete. Support for
mxClearLogical may be removed in a future version.

This function turns off the mxArray’s logical flag. This flag, when cleared, tells
MATLAB that the mxArray’s data is to be treated as numeric data rather than
as Boolean data. If the logical flag is on, then MATLAB treats a 0 value as
meaning false and a nonzero value as meaning true. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

See Also mxIsLogical, mxSetLogical (Obsolete), logical

mxCopyCharacterToPtr

7-11

7mxCopyCharacterToPtrPurpose Copy character values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyCharacterToPtr(y, px, n)
character*(*) y
integer*4 px, n

Arguments y
character Fortran array.

px
Pointer to character or name array.

n
Number of elements to copy.

Description mxCopyCharacterToPtr copies n character values from the Fortran character
array y into the MATLAB string array pointed to by px. This subroutine is
essential for copying character data between MATLAB pointer arrays and
ordinary Fortran character arrays.

See Also mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyComplex8ToPtr

7-12

7mxCopyComplex8ToPtrPurpose Copy COMPLEX*8 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyComplex8ToPtr(y, pr, pi, n)
complex*8 y(n)
integer*4 pr, pi, n

Arguments y
COMPLEX*8 Fortran array.

pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran COMPLEX*8
array y into the MATLAB arrays pointed to by pr and pi. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyPtrToComplex8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyComplex16ToPtr

7-13

7mxCopyComplex16ToPtrPurpose Copy COMPLEX*16 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
integer*4 pr, pi, n

Arguments y
COMPLEX*16 Fortran array.

pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex16, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyInteger1ToPtr

7-14

7mxCopyInteger1ToPtrPurpose Copy INTEGER*1 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyInteger1ToPtr(y, px, n)
integer*1 y(n)
integer*4 px, n

Arguments y
INTEGER*1 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger1ToPtr copies n INTEGER*1 values from the Fortran INTEGER*1
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger1, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyInteger2ToPtr

7-15

7mxCopyInteger2ToPtrPurpose Copy INTEGER*2 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyInteger2ToPtr(y, px, n)
integer*2 y(n)
integer*4 px, n

Arguments y
INTEGER*2 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran INTEGER*2
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger2, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyInteger4ToPtr

7-16

7mxCopyInteger4ToPtrPurpose Copy INTEGER*4 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
integer*4 px, n

Arguments y
INTEGER*4 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran INTEGER*4
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger4, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToCharacter

7-17

7mxCopyPtrToCharacterPurpose Copy character values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToCharacter(px, y, n)
character*(*) y
integer*4 px, n

Arguments px
Pointer to character or name array.

y
character Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToCharacter copies n character values from the MATLAB array
pointed to by px into the Fortran character array y. This subroutine is
essential for copying character data from MATLAB pointer arrays into
ordinary Fortran character arrays.

Examples See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyPtrToComplex8

7-18

7mxCopyPtrToComplex8Purpose Copy COMPLEX*8 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToComplex8(pr, pi, y, n)
complex*8 y(n)
integer*4 pr, pi, n

Arguments pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

y
COMPLEX*8 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*8 array y. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyComplex8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToComplex16

7-19

7mxCopyPtrToComplex16Purpose Copy COMPLEX*16 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToComplex16(pr, pi, y, n)
complex*16 y(n)
integer*4 pr, pi, n

Arguments pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

y
COMPLEX*16 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*16 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

See Also mxCopyComplex16ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToInteger1

7-20

7mxCopyPtrToInteger1Purpose Copy INTEGER*1 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger1(px, y, n)
integer*1 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*1 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger1 copies n INTEGER*1 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*1 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger1ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToInteger2

7-21

7mxCopyPtrToInteger2Purpose Copy INTEGER*2 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger2(px, y, n)
integer*2 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*2 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*2 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger2ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToInteger4

7-22

7mxCopyPtrToInteger4Purpose Copy INTEGER*4 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger4(px, y, n)
integer*4 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*4 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*4 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToPtrArray

7-23

7mxCopyPtrToPtrArrayPurpose Copy pointer values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToPtrArray(px, y, n)
integer*4 y(n)
integer*4 px, n

Arguments px
Pointer to pointer array.

y
INTEGER*4 Fortran array.

n
Number of pointers to copy.

Description mxCopyPtrToPtrArray copies n pointers from the MATLAB array pointed to by
px into the Fortran array y. This subroutine is essential for copying the output
of matGetDir into an array of pointers. After calling this function, each element
of y contains a pointer to a string. You can convert these strings to Fortran
character arrays by passing each element of y as the first argument to
mxCopyPtrToCharacter.

Examples See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also matGetDir, mxCopyPtrToCharacter

mxCopyPtrToReal4

7-24

7mxCopyPtrToReal4Purpose Copy REAL*4 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToReal4(px, y, n)
real*4 y(n)
integer*4 px, n

Arguments px
Pointer to the real or imaginary data of a single-precision MATLAB array.

y
REAL*4 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*4 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

See Also mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToReal8

7-25

7mxCopyPtrToReal8Purpose Copy REAL*8 values from pointer array to Fortran array

Fortran Syntax subroutine mxCopyPtrToReal8(px, y, n)
real*8 y(n)
integer*4 px, n

Arguments px
Pointer to the real or imaginary data of a double-precision MATLAB array.

y
REAL*8 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*8 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

Examples See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyReal4ToPtr

7-26

7mxCopyReal4ToPtrPurpose Copy REAL*4 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyReal4ToPtr(y, px, n)
real*4 y(n)
integer*4 px, n

Arguments y
REAL*4 Fortran array.

px
Pointer to the real or imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyReal4ToPtr(y,px,n) copies n REAL*4 values from the Fortran REAL*4
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyReal8ToPtr

7-27

7mxCopyReal8ToPtrPurpose Copy REAL*8 values from Fortran array to pointer array

Fortran Syntax subroutine mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
integer*4 px, n

Arguments y
REAL*8 Fortran array.

px
Pointer to the real or imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyReal8ToPtr(y,px,n) copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Examples See matdemo1.f and fengdemo.f in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCreateCellArray

7-28

7mxCreateCellArrayPurpose Create unpopulated N-dimensional cell mxArray

Fortran Syntax integer*4 function mxCreateCellArray(ndim, dims)
integer*4 ndim, dims

Arguments ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims(1) to 5 and
dims(2) to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to 0. To put data into a cell, call mxSetCell.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

mxCreateCellMatrix

7-29

7mxCreateCellMatrixPurpose Create unpopulated two-dimensional cell mxArray

Fortran Syntax integer*4 function mxCreateCellMatrix(m, n)
integer*4 m, n

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to 0. To put data into the cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

See Also mxCreateCellArray

mxCreateCharArray

7-30

7mxCreateCharArrayPurpose Create unpopulated N-dimensional character mxArray

Fortran Syntax integer*4 function mxCreateCharArray(ndim, dims)
integer*4 ndim, dims

Arguments ndim
The desired number of dimensions in the character mxArray. You must specify
a positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 character mxArray. The dims array must have at least
ndim elements.

Returns A pointer to the created character mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Description Use mxCreateCharArray to create an mxArray of characters whose size is
defined by ndim and dims. For example, to establish a two-dimensional mxArray
of characters having dimensions 12-by-3, set

ndim = 2;
dims(1) = 12; dims(2) = 3;

The created mxArray is unpopulated; that is, mxCreateCharArray initializes
each character to INTEGER*2 0.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

See Also mxCreateString

mxCreateCharMatrixFromStrings

7-31

7mxCreateCharMatrixFromStringsPurpose Create populated two-dimensional char mxArray

Fortran Syntax integer*4 function mxCreateCharMatrixFromStrings(m, str)
integer*4 m
character*(*) str(m)

Arguments m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the size of the str array.

str
A Fortran character*n array of size m, where each element of the array is n
bytes.

Returns A pointer to the created char mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns 0. If unsuccessful in a MEX-file, the MEX-file terminates, and control
returns to the MATLAB prompt. Insufficient free heap space is the primary
reason for mxCreateCharMatrixFromStrings to be unsuccessful. Another
possible reason for failure is that str contains fewer than m strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to str. The created mxArray has
dimensions m-by-n, where n is the length of the number of characters in str(i).

See Also mxCreateCharArray, mxCreateString

mxCreateDoubleMatrix

7-32

7mxCreateDoubleMatrixPurpose Create unpopulated two-dimensional, double-precision, floating-point mxArray

Fortran Syntax integer*4 function mxCreateDoubleMatrix(m, n, ComplexFlag)
integer*4 m, n, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary component,
specify 0. If the data has some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateDoubleMatrix is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.

If you set ComplexFlag to 0, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and initializes each element to 0.0.

If you set ComplexFlag to 1, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and m-by-n imaginary elements. It initializes each
real and imaginary element to 0.0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

See Also mxCreateNumericArray

mxCreateFull (Obsolete)

7-33

7mxCreateFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxCreateDoubleMatrix instead.

See Also mxCreateSparse

mxCreateNumericArray

7-34

7mxCreateNumericArrayPurpose Create unpopulated N-dimensional numeric mxArray

Fortran Syntax integer*4 function mxCreateNumericArray(ndim, dims, classid,
ComplexFlag)

integer*4 ndim, dims, classid, ComplexFlag

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

classid
A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericArray accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data will have some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateNumericArray is unsuccessful when there is not enough free
heap space to create the mxArray.

mxCreateNumericArray

7-35

Description Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by classid. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag is set to 1, mxCreateNumericArray also initializes all its
imaginary data elements to 0.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

mxCreateNumericArray differs from mxCreateDoubleMatrix in two important
respects:

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

MATLAB Class Name Fortran Type

int8 INTEGER*1

int16 INTEGER*2

int32 INTEGER*4

single REAL*4

double REAL*8

single, with imaginary components COMPLEX*8

double, with imaginary components COMPLEX*16

mxCreateNumericArray

7-36

Examples To create a 4-by-4-by-2 array of REAL*8 elements having no imaginary
components, use

C Create 4x4x2 mxArray of REAL*8
 data dims / 4, 4, 2 /
 mxCreateNumericArray(3, dims,
 + mxClassIDFromClassName('double'), 0)

See Also mxCreateDoubleMatrix, mxCreateNumericMatrix, mxCreateSparse,
mxCreateString

mxCreateNumericMatrix

7-37

7mxCreateNumericMatrixPurpose Create numeric matrix and initialize data elements to 0

Fortran Syntax integer*4 function mxCreateNumericMatrix(m, n, classid,
ComplexFlag)

integer*4 m, n, classid, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

classid
A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericMatrix accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data has some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns 0.

Description Call mxCreateNumericMatrix to create an two-dimensional mxArray in which
all data elements have the numeric data type specified by classid. After
creating the mxArray, mxCreateNumericMatrix initializes all its real data
elements to 0. If ComplexFlag is set to 1, mxCreateNumericMatrix also
initializes all its imaginary data elements to 0. mxCreateNumericMatrix

mxCreateNumericMatrix

7-38

allocates dynamic memory to store the created mxArray. When you finish using
the mxArray, call mxDestroyArray to destroy it.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

Examples To create a 4-by-3 matrix of REAL*4 elements having no imaginary components,
use

C Create 4x3 mxArray of REAL*4
 mxCreateNumericMatrix(4, 3,
 + mxClassIDFromClassName('single'), 0)

See Also mxCreateDoubleMatrix, mxCreateNumericArray

MATLAB Class Name Fortran Type

int8 BYTE

int16 INTEGER*2

int32 INTEGER*4

single REAL*4

double REAL*8

single, with imaginary components COMPLEX*8

double, with imaginary components COMPLEX*16

mxCreateScalarDouble

7-39

7mxCreateScalarDoublePurpose Create scalar, double-precision array initialized to specified value

Fortran Syntax integer*4 function mxCreateScalarDouble(value)
real*4 value

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns 0.

Description Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code.

pm = mxCreateDoubleMatrix(1, 1, 0)
mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

7-40

7mxCreateSparsePurpose Create two-dimensional unpopulated sparse mxArray

Fortran Syntax integer*4 function mxCreateSparse(m, n, nzmax, ComplexFlag)
integer*4 m, n, nzmax, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag = 1, pi arrays. Set the value of nzmax to be greater than
or equal to the number of nonzero elements you plan to put into the mxArray,
but make sure that nzmax is less than or equal to m*n.

ComplexFlag
Specify REAL = 0 if the data has no imaginary components; specify
COMPLEX = 1 if the data has some imaginary components.

Returns An unpopulated, sparse double mxArray if successful, and 0 otherwise.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray. The
returned sparse mxArray contains no sparse information and cannot be passed
as an argument to any MATLAB sparse functions. In order to make the
returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it
exists) pi array.

mxCreateSparse allocates space for

• A pr array of length nzmax.

• A pi array of length nzmax (but only if ComplexFlag is COMPLEX = 1).

• An ir array of length nzmax.

• A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetIr, mxSetJc

mxCreateString

7-41

7mxCreateStringPurpose Create 1-by-N character array initialized to specified string

Fortran Syntax integer*4 function mxCreateString(str)
character*(*) str

Arguments str
The string that is to serve as the mxArray's initial data.

Returns A character array initialized to str if successful, and 0 otherwise.

Description Use mxCreateString to create a character mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require character
mxArray inputs.

Free the character mxArray when you are finished using it. To free a
character mxArray, call mxDestroyArray.

Examples See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxDestroyArray

mxCreateStructArray

7-42

7mxCreateStructArrayPurpose Create unpopulated N-dimensional structure mxArray

Fortran Syntax integer*4 function mxCreateStructArray(ndim, dims, nfields,
fieldnames)

integer*4 ndim, dims, nfields
character*(*) fieldnames(nfields)

Arguments ndim
Number of dimensions. If you set ndim to be less than 2, mxCreateStructArray
creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[1] to 5 and dims[2]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Structure field names must begin with a letter, and are case-sensitive. The rest
of the name may contain letters, numerals, and underscore characters. Use the
namelengthmax function to determine the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and zero otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in fieldnames.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to zero. Call mxSetField or mxSetFieldByNumber to place a non-zero
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

mxCreateStructArray

7-43

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim equals 5
and dims equals [4 1 7 1 1], the resulting array is given the dimensions
4-by-1-by-7.

See Also mxDestroyArray, mxCreateStructMatrix, mxIsStruct, mxAddField,
mxSetField, mxGetField, mxRemoveField, namelengthmax

mxCreateStructMatrix

7-44

7mxCreateStructMatrixPurpose Create unpopulated two-dimensional structure mxArray

Fortran Syntax integer*4 function mxCreateStructMatrix(m, n, nfields, fieldnames)
integer*4 m, n, nfields
character*(*) fieldnames(nfields)

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Structure field names must begin with a letter, and are case-sensitive. The rest
of the name may contain letters, numerals, and underscore characters. Use the
namelengthmax function to determine the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and 0 otherwise. The
most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

See Also mxCreateStructArray, mxIsStruct, mxAddField, mxSetField, mxGetField,
mxRemoveField, namelengthmax

mxDestroyArray

7-45

7mxDestroyArrayPurpose Free dynamic memory allocated by mxCreate

Fortran Syntax subroutine mxDestroyArray(pm)
integer*4 pm

Arguments pm
Pointer to the mxArray that you want to free.

Description mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray’s
characteristics fields (such as m and n), but also deallocates all the mxArray’s
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

See Also mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

mxDuplicateArray

7-46

7mxDuplicateArrayPurpose Make deep copy of array

Fortran Syntax integer*4 function mxDuplicateArray(in)
integer*4 in

Arguments in
Pointer to the mxArray that you want to copy.

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

mxFree

7-47

7mxFreePurpose Free dynamic memory allocated by mxCalloc, mxMalloc, or mxRealloc

Fortran Syntax subroutine mxFree(ptr)
integer*4 ptr

Arguments ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc,
mxMalloc, or mxRealloc.

Description mxFree deallocates heap space. mxFree frees memory using the MATLAB
memory management facility. This ensures correct memory management in
error and abort (Ctrl+C) conditions.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications. With MEX-files, mxFree returns to the heap any memory
allocated using mxCalloc. If you do not free memory with this command,
MATLAB frees it automatically on return from the MEX-file. In stand-alone
MATLAB applications, you have to explicitly free memory, and MATLAB
memory management is not used.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call mexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

See Also mxCalloc, mxRealloc, mxDestroyArray

mxFreeMatrix (Obsolete)

7-48

7mxFreeMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxDestroyArray instead.

See Also mxCalloc, mxFree

mxGetCell

7-49

7mxGetCellPurpose Get contents of cell

Fortran Syntax integer*4 function mxGetCell(pm, index)
integer*4 pm, index

Arguments pm
Pointer to a cell mxArray.

index
The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and 0 otherwise. Causes of
failure include:

• The indexed cell array element has not been populated.

• Specifying an array pointer, pm, that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

See Also mxCreateCellArray, mxIsCell, mxSetCell

mxGetClassID

7-50

7mxGetClassIDPurpose Get class identifier of mxArray

Fortran Syntax integer*4 function mxGetClassID(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns A numeric identifier that represents the class (category) of the mxArray that pm
points to.

Description Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding.

See Also mxGetClassName

mxGetClassName

7-51

7mxGetClassNamePurpose Get mxArray class as character array

Fortran Syntax character*(*) function mxGetClassName(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The class (as a character array) of mxArray, pm.

Description Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if pm
points to a logical mxArray, then mxGetClassName returns logical.

See Also mxGetClassID

mxGetData

7-52

7mxGetDataPurpose Get pointer to data

Fortran Syntax integer*4 function mxGetData(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the real data, on success. Returns 0 if there
is no real data or if there is an error.

Description Call mxGetData to get a pointer to the real data in the mxArray that pm points
to. To copy values from the pointer to Fortran, use one of the mxCopyPtrTo*
functions in the manner shown here.

C Get the data in mxArray, pm
 mxCopyPtrToReal8(mxGetData(pm), data,
 + mxGetNumberOfElements(pm))

mxGetData is equivalent to using mxGetPr.

See Also mxGetImagData, mxSetData, mxSetImagData, mxCopyPtrToReal4,
mxCopyPtrToReal8, mxGetPr

mxGetDimensions

7-53

7mxGetDimensionsPurpose Get pointer to dimensions array

Fortran Syntax integer*4 function mxGetDimensions(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns A pointer to the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension.

Description Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that pm points to. Call mxGetNumberOfDimensions to get the
number of dimensions in the mxArray.

mxGetDimensions returns a pointer to the dimension array. To copy the values
to Fortran, use mxCopyPtrToInteger4 in the manner shown here.

C Get dimensions of mxArray, pm
 mxCopyPtrToInteger4(mxGetDimensions(pm), dims,
 + mxGetNumberOfDimensions(pm))

See Also mxGetNumberOfDimensions

mxGetElementSize

7-54

7mxGetElementSizePurpose Get number of bytes required to store each data element

Fortran Syntax integer*4 function mxGetElementSize(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that pm points
to an mxArray having an unrecognized class. If pm points to a cell mxArray or a
structure mxArray, then mxGetElementSize returns the size of a pointer (not
the size of all the elements in each cell or structure field).

Description Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the class of an mxArray is int16, then the
mxArray stores each data element as a 16-bit (2 byte) signed integer. Thus,
mxGetElementSize returns 2.

See Also mxGetM, mxGetN

mxGetEps

7-55

7mxGetEpsPurpose Get value of eps

Fortran Syntax real*8 function mxGetEps

Returns The value of the MATLAB eps variable.

Description Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB pinv and rank
functions use eps as a default tolerance.

See Also mxGetInf, mxGetNaN

mxGetField

7-56

7mxGetFieldPurpose Get structure array field value, given field name and index

Fortran Syntax integer*4 function mxGetField(pm, index, fieldname)
integer*4 pm, index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified fieldname, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. To determine if pm
points to a structure mxArray, call mxIsStruct.

• Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 10.

• Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber to get
existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the specified
field.

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes fieldnumber as its third argument, and
mxGetField takes fieldname as its third argument.

mxGetField

7-57

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxSetFieldByNumber

mxGetFieldByNumber

7-58

7mxGetFieldByNumberPurpose Get structure array field value, given field number and index

Fortran Syntax integer*4 function mxGetFieldByNumber(pm, index, fieldnumber)
integer*4 pm, index, fieldnumber

Arguments pm
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber
The position of the field whose value you want to extract. The first field within
each element has a field number of 1, the second field has a field number of 2,
and so on. The last field has a field number of N, where N is the number of fields.

Returns A pointer to the mxArray in the specified field for the desired element, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to is a structure mxArray.

• Specifying an index < 1 or > the number of elements in the array.

• Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified fieldnumber at
the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

7-59

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

See Also mxGetField, mxGetFieldNameByNumber, mxGetNumberOfFields, mxSetField,
mxSetFieldByNumber

mxGetFieldNameByNumber

7-60

7mxGetFieldNameByNumberPurpose Get structure array field name, given field number

Fortran Syntax character*(*) function mxGetFieldNameByNumber(pm, fieldnumber)
integer*4 pm, fieldnumber

Arguments pm
Pointer to a structure mxArray.

fieldnumber
The position of the desired field. For instance, to get the name of the first field,
set fieldnumber to 1; to get the name of the second field, set fieldnumber to 2;
and so on.

Returns The nth field name, on success. Returns 0 on failure. Common causes of failure
include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

• Specifying a value of fieldnumber greater than the number of fields in the
structure mxArray. (Remember that fieldnumber 1 represents the first field,
so index N represents the last field.)

Description Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop to
get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 1 represents the field name; field number 2 represents field
billing; field number 3 represents field test. A field number other than 1, 2,
or 3 causes mxGetFieldNameByNumber to return 0.

See Also mxGetField, mxIsStruct, mxSetField

mxGetFieldNumber

7-61

7mxGetFieldNumberPurpose Get structure array field number, given field name

Fortran Syntax integer*4 function mxGetFieldNumber(pm, fieldname)
integer*4 pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of a field in the structure mxArray.

Returns The field number of the specified fieldname, on success. The first field has a
field number of 1, the second field has a field number of 2, and so on. Returns
0 on failure. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

• Specifying the fieldname of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name has a field number of 1; the field billing has a field number of
2; and the field test has a field number of 3. If you call mxGetFieldNumber and
specify a field name of anything other than 'name', 'billing', or 'test', then
mxGetFieldNumber returns 0.

mxGetFieldNumber

7-62

Calling

mxGetField(pm, index, 'fieldname');

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname');
mxGetFieldByNumber(pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetImagData

7-63

7mxGetImagDataPurpose Get pointer to imaginary data of mxArray

Fortran Syntax integer*4 function mxGetImagData(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the imaginary data, on success. Returns 0 if
there is no imaginary data or if there is an error.

Description Call mxGetImagData to determine the starting address of the imaginary data in
the mxArray that pm points to. To copy values from the pointer to Fortran, use
one of the mxCopyPtrToComplex* functions in the manner shown here.

C Get the real and imaginary data in mxArray, pm
 mxCopyPtrToComplex16(mxGetData(pm), mxGetImagData(pm),
 + data, mxGetNumberOfElements(pm))

mxGetImagData is equivalent to using mxGetPi.

See Also mxGetData, mxSetImagData, mxSetData, mxCopyPtrToComplex8,
mxCopyPtrToComplex16, mxGetPi

mxGetInf

7-64

7mxGetInfPurpose Get value of infinity

Fortran Syntax real*8 function mxGetInf

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system. You cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

See Also mxGetEps, mxGetNaN

mxGetIr

7-65

7mxGetIr Purpose Get ir array

Fortran Syntax integer*4 function mxGetIr(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns A pointer to the first element in the ir array if successful, and zero otherwise.
Possible causes of failure include:

• Specifying a full (nonsparse) mxArray.

• An earlier call to mxCreateSparse failed.

Description Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

mxGetJc

7-66

7mxGetJc Purpose Get jc array

Fortran Syntax integer*4 function mxGetJc(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns A pointer to the first element in the jc array if successful, and zero otherwise.
The most likely cause of failure is specifying a pointer that points to a full
(nonsparse) mxArray.

Description Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetJc.

See Also mxGetIr, mxSetIr, mxSetJc

mxGetM

7-67

7mxGetMPurpose Get number of rows in mxArray

Fortran Syntax integer*4 function mxGetM(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of rows in the mxArray to which pm points.

Description mxGetM returns the number of rows in the specified array.

Examples See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxGetN, mxSetM, mxSetN

mxGetN

7-68

7mxGetNPurpose Get number of columns in mxArray

Fortran Syntax integer*4 function mxGetN(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified mxArray.

If pm points to a sparse mxArray, mxGetN still returns the number of columns,
not the number of occupied columns.

Examples See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxGetM, mxSetM, mxSetN

mxGetName (Obsolete)

7-69

7mxGetName (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

mxGetNaN

7-70

7mxGetNaNPurpose Get value of NaN (Not-a-Number)

Fortran Syntax real*8 function mxGetNaN

Returns The value of NaN (Not-a-Number) on your system.

Description Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example:

• 0.0/0.0
• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.

See Also mxGetEps, mxGetInf

mxGetNumberOfDimensions

7-71

7mxGetNumberOfDimensionsPurpose Get number of dimensions in mxArray

Fortran Syntax integer*4 function mxGetNumberOfDimensions(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

See Also mxSetM, mxSetN, mxGetDimensions

mxGetNumberOfElements

7-72

7mxGetNumberOfElementsPurpose Get number of elements in mxArray

Fortran Syntax integer*4 function mxGetNumberOfElements(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Number of elements in the specified mxArray.

Description mxGetNumberOfElements tells you how many elements an mxArray has. For
example, if the dimensions of an array are 3-by-5-by-10, then
mxGetNumberOfElements will return the number 150.

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassName

mxGetNumberOfFields

7-73

7mxGetNumberOfFieldsPurpose Get number of fields in structure mxArray

Fortran Syntax integer*4 function mxGetNumberOfFields(pm)
integer*4 pm

Arguments pm
Pointer to a structure mxArray.

Returns The number of fields, on success. Returns 0 on failure of if no fields exist. The
most common cause of failure is that pm is not a structure mxArray. Call
mxIsStruct to determine if pm is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field to set or to get field values.

See Also mxGetField, mxIsStruct, mxSetField

mxGetNzmax

7-74

7mxGetNzmax Purpose Get number of elements in ir, pr, and pi arrays

Fortran Syntax integer*4 function mxGetNzmax(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that pm points to a full (nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

See Also mxSetNzmax

mxGetPi

7-75

7mxGetPiPurpose Get imaginary data elements of mxArray

Fortran Syntax integer*4 function mxGetPi(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The imaginary data elements of the specified mxArray, on success. Returns 0 if
there is no imaginary data or if there is an error.

Description Use mxGetPi to determine the starting address of the imaginary data in the
mxArray that pm points to.

See the description for mxGetImagData, which is an equivalent function to
mxGetPi.

See Also mxGetPr, mxSetPi, mxSetPr, mxGetImagData

mxGetPr

7-76

7mxGetPrPurpose Get real data elements of mxArray

Fortran Syntax integer*4 function mxGetPr(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the real data. Returns 0 if there is no real
data.

Description Use mxGetPr to determine the starting address of the real data in the mxArray
that pm points to.

See the description for mxGetData, which is an equivalent function to mxGetPr.

Examples See matdemo1.f and fengdemo.f in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetPi, mxSetPr, mxSetPi, mxGetData

mxGetScalar

7-77

7mxGetScalarPurpose Get real component of first data element in mxArray

Fortran Syntax real*8 function mxGetScalar(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The value of the first real (nonimaginary) element of the mxArray. If pm points
to a sparse mxArray, mxGetScalar returns the value of the first nonzero real
element in the mxArray.

If pm points to an empty mxArray, mxGetScalar returns an indeterminate value.

Description Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray containing
only one element (a scalar). However, pm can point to an mxArray containing
many elements. If pm points to an mxArray containing multiple elements,
mxGetScalar returns the value of the first real element. If pm points to a
two-dimensional mxArray, mxGetScalar returns the value of the (1,1)
element.

See Also mxGetM, mxGetN

mxGetString

7-78

7mxGetStringPurpose Create character array from mxArray

Fortran Syntax integer*4 function mxGetString(pm, str, strlen)
integer*4 pm, strlen
character*(*) str

Arguments pm
Pointer to an mxArray.

str
Fortran character array.

strlen
Number of characters to retrieve from the mxArray.

Returns 0 on success, and 1 otherwise.

Description Call mxGetString to copy a character array from an mxArray. mxGetString
copies and converts the character array from the mxArray pm into the
character array str. Storage space for character array str must be allocated
previously.

Only up to strlen characters are copied, so ordinarily, strlen is set to the
dimension of the character array to prevent writing past the end of the array.
Check the length of the character array in advance using mxGetM and mxGetN.
If the character array contains several rows, they are copied, one column at a
time, into one long character array.

See Also mxCalloc

mxIsCell

7-79

7mxIsCellPurpose Determine if input is cell mxArray

Fortran Syntax integer*4 function mxIsCell(pm)
integer*4 pm

Arguments pm
Pointer to an array.

Returns Logical 1 (true) if pm points to an array of the MATLAB cell class, and logical
0 (false) otherwise.

Description Use mxIsCell to determine if the specified mxArray is a cell array.

Calling mxIsCell is equivalent to calling

mxGetClassName(pm) .eq. 'cell'

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

See Also mxIsClass

mxIsChar

7-80

7mxIsCharPurpose Determine if input is character mxArray

Fortran Syntax integer*4 function mxIsChar(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to an array of the MATLAB char class, and logical
0 (false) otherwise.

Description Use mxIsChar to determine if the specified array is a character mxArray.

Calling mxIsChar is equivalent to calling

mxGetClassName(pm) .eq. 'char'

See Also mxIsClass, mxGetClassID

mxIsClass

7-81

7mxIsClassPurpose Determine if mxArray is member of specified class

Fortran Syntax integer*4 function mxIsClass(pm, classname)
integer*4 pm
character*(*) classname

Arguments pm
Pointer to an array.

classname
A character array specifying the class name you are testing for. You can
specify any one of the following predefined constants.

In the table, <class_name> represents the name of a specific MATLAB custom
object. You can also specify one of your own class names.

Returns Logical 1 (true) if pm points to an array having category classname, and logical
0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

Examples mxIsClass(pm, 'double')

is equivalent to calling either one of the following

mxIsDouble(pm)

mxGetClassName(pm) .eq. 'double'

It is more efficient to use the mxIsDouble form.

See Also mxIsEmpty, mxGetClassID

cell char double function_handle

int8 int16 int32 logical

object single struct uint8

uint16 uint32 <class_name> unknown

mxIsComplex

7-82

7mxIsComplexPurpose Determine if mxArray is complex

Fortran Syntax integer*4 function mxIsComplex(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if complex, and 0 otherwise.

Description Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is 0 if an mxArray is purely real and
does not have any imaginary data. If an mxArray is complex, pi points to an
array of numbers.

See Also mxIsNumeric

mxIsDouble

7-83

7mxIsDoublePurpose Determine if mxArray is of type double

Fortran Syntax integer*4 function mxIsDouble(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if mxArray is of type double; and logical 0 (false) otherwise. If
mxIsDouble returns 0, the array has no Fortran access functions and your
Fortran program cannot use it.

Description Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB 5, MATLAB can
store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassName(pm) .eq. 'double'

mxIsEmpty

7-84

7mxIsEmptyPurpose Determine if mxArray is empty

Fortran Syntax integer*4 function mxIsEmpty(pm)
integer*4 pm

Arguments pm
Pointer to an array.

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.

See Also mxIsClass

mxIsFinite

7-85

7mxIsFinitePurpose Determine if input is finite

Fortran Syntax integer*4 function mxIsFinite(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than -Inf and less than Inf.

See Also mxIsInf, mxIsNaN

mxIsFromGlobalWS

7-86

7mxIsFromGlobalWSPurpose Determine if mxArray originated from MATLAB global workspace

Fortran Syntax integer*4 function mxIsFromGlobalWS(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array originated from the global workspace, and logical
0 (false) otherwise.

Description Use mxIsFromGlobalWS with stand-alone MAT programs to determine if an
array was a global variable when it was saved.

See Also mexIsGlobal

mxIsFull (Obsolete)

7-87

7mxIsFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

if (mxIsSparse(prhs(1)) .eq. 0)

instead of

if (mxIsFull(prhs(1)) .eq. 1)

See Also mxIsSparse

mxIsInf

7-88

7mxIsInfPurpose Determine if input is infinite

Fortran Syntax integer*4 function mxIsInf(value)
integer*4 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system. You cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

See Also mxIsFinite, mxIsNaN

mxIsInt8

7-89

7mxIsInt8Purpose Determine if input is mxArray of signed 8-bit integers

Fortran Syntax integer*4 function mxIsInt8(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.

Calling mxIsInt8 is equivalent to calling

mxGetClassName(pm) .eq. 'int8'

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt16

7-90

7mxIsInt16Purpose Determine if input is mxArray of signed 16-bit integers

Fortran Syntax integer*4 function mxIsInt16(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassName(pm) == 'int16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt32

7-91

7mxIsInt32Purpose Determine if input is mxArray of signed 32-bit integers

Fortran Syntax integer*4 function mxIsInt32(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.

Calling mxIsInt32 is equivalent to calling

mxGetClassName(pm) == 'int32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt64

7-92

7mxIsInt64Purpose Determine if input is mxArray of signed 64-bit integers

Fortran Syntax integer*4 function mxIsInt64(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array represents its
real and imaginary data as 64-bit signed integers.

Calling mxIsInt64 is equivalent to calling

mxGetClassName(pm) == 'int64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsLogical

7-93

7mxIsLogicalPurpose Determine if mxArray is Boolean

Fortran Syntax integer*4 function mxIsLogical(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, then MATLAB treats all
zeros as meaning false and all nonzero values as meaning true. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

See Also mxIsClass, mxSetLogical (Obsolete), logical

mxIsNaN

7-94

7mxIsNaNPurpose Determine if value is NaN (Not-a-Number)

Fortran Syntax integer*4 function mxIsNaN(value)
integer*4 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as:

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) uses to represent an error condition
or missing data.

See Also mxIsFinite, mxIsInf

mxIsNumeric

7-95

7mxIsNumericPurpose Determine if mxArray contains numeric data

Fortran Syntax integer*4 function mxIsNumeric(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray contains numeric data, and 0 otherwise.

Description Call mxIsNumeric to inquire whether or not the mxArray contains numeric data,
such as data of class double or uint16. Note that logical data is not numeric.

Examples See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxIsString (Obsolete)

mxIsSingle

7-96

7mxIsSinglePurpose Determine if input is single-precision, floating-point mxArray

Fortran Syntax integer*4 function mxIsSingle(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as single-precision, floating-point
numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassName(pm) .eq. 'single'

See Also mxIsClass, mxGetClassID

mxIsSparse

7-97

7mxIsSparsePurpose Determine if mxArray is sparse

Fortran Syntax integer*4 function mxIsSparse(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray is sparse, and 0 otherwise.

Description Use mxIsSparse to determine if an mxArray is stored in sparse form. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

There are no corresponding set routines. Use mxCreateSparse to create sparse
mxArrays.

See Also mxGetIr, mxGetJc, mxCreateSparse

mxIsString (Obsolete)

7-98

7mxIsString (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsChar instead.

See Also mxCreateString, mxGetString

mxIsStruct

7-99

7mxIsStructPurpose Determine if input is structure mxArray

Fortran Syntax integer*4 function mxIsStruct(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to a structure array; and logical 0 (false)
otherwise.

Description Use mxIsStruct to determine if pm points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

7-100

7mxIsUint8Purpose Determine if input is mxArray of unsigned 8-bit integers

Fortran Syntax integer*4 function mxIsInt8(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint8 to determine whether or not the specified mxArray represents
its real and imaginary data as 8-bit unsigned integers.

Calling mxIsUint8 is equivalent to calling

mxGetClassName(pm) == 'uint8'

See Also mxIsClass, mxGetClassID, mxIsUint16, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint16

7-101

7mxIsUint16Purpose Determine if input is mxArray of unsigned 16-bit integers

Fortran Syntax integer*4 function mxIsUint16(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.

Calling mxIsUint16 is equivalent to calling

mxGetClassName(pm) == 'uint16'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint32

7-102

7mxIsUint32Purpose Determine if input is mxArray of unsigned 32-bit integers

Fortran Syntax integer*4 function mxIsUint32(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.

Calling mxIsUint32 is equivalent to calling

mxGetClassName(pm) == 'uint32'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint64

7-103

7mxIsUint64Purpose Determine if input is mxArray of unsigned 64-bit integers

Fortran Syntax integer*4 function mxIsUint64(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray represents
its real and imaginary data as 64-bit unsigned integers.

Calling mxIsUint64 is equivalent to calling

mxGetClassName(pm) == 'uint64'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint32, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxMalloc

7-104

7mxMallocPurpose Allocate dynamic memory using MATLAB memory manager

Fortran Syntax integer*4 function mxMalloc(n)
integer*4 n

Arguments n
Number of bytes to allocate.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (non-MEX-file) application, mxMalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description Use mxMalloc to allocate dynamic memory using the MATLAB memory
management facility.

MATLAB maintains a list of all memory allocated by mxMalloc. MATLAB
automatically frees (deallocates) all of a MEX-file’s memory when the MEX-file
completes and control returns to the MATLAB prompt.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxMalloc. If you write a MEX-file with
persistent memory, be sure to register a mexAtExit function to free allocated
memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree. mxFree
deallocates the memory.

Note that mxMalloc works differently in MEX-files than in stand-alone
MATLAB applications.

In MEX-files, mxMalloc automatically:

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory management
facility.

See Also mxCalloc, mxRealloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxRealloc

7-105

7mxReallocPurpose Reallocate memory

Fortran Syntax integer*4 function mxRealloc(ptr, size)
integer*4 ptr, size

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, mxMalloc, or mxRealloc.

size
New size of allocated memory, in bytes.

Returns A pointer to the reallocated block of memory, or 0 if size is 0. In a stand-alone
(non-MEX-file) application, if not enough memory is available to expand the
block to the given size, mxRealloc returns 0. In a MEX-file, if not enough
memory is available to expand the block to the given size, the MEX-file
terminates and control returns to the MATLAB prompt.

Description mxRealloc changes the size of a memory block that has been allocated with
mxCalloc, mxMalloc, or mxRealloc.

If size is 0 and ptr is not 0, mxRealloc frees the memory pointed to by ptr and
returns 0.

If size is greater than 0 and ptr is 0, mxRealloc behaves like mxMalloc,
allocating a new block of memory of size bytes and returning a pointer to the
new block.

Otherwise, mxRealloc changes the size of the memory block pointed to by ptr
to size bytes. The contents of the reallocated memory are unchanged up to the
smaller of the new and old sizes. The reallocated memory may be in a different
location from the original memory, so the returned pointer can be different
from ptr. If the memory location changes, mxRealloc frees the original memory
block pointed to by ptr.

In a stand-alone (non-MEX-file) application, if not enough memory is available
to expand the block to the given size, mxRealloc returns 0 and leaves the
original memory block unchanged. You must use mxFree to free the original
memory block.

MATLAB maintains a list of all memory allocated by mxRealloc. By default, in
a MEX-file, mxRealloc generates nonpersistent mxRealloc data. The memory

mxRealloc

7-106

management facility automatically deallocates the memory as soon as the
MEX-file ends.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxRealloc. If you write a MEX-file
with persistent memory, be sure to register a mexAtExit function to free
allocated memory when your MEX-file is cleared.

When you finish using the memory allocated by mxRealloc, call mxFree. mxFree
deallocates the memory.

See Also mxCalloc, mxFree, mxMalloc

mxRemoveField

7-107

7mxRemoveFieldPurpose Remove field from structure mxArray

Fortran Syntax subroutine mxRemoveField(pm, fieldnumber)
integer*4 pm, fieldnumber

Arguments pm
Pointer to a structure mxArray.

fieldnumber
The number of the field you want to remove. For instance, to remove the first
field, set fieldnumber to 1; to remove the second field, set fieldnumber to 2;
and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 1 represents the field name; field number 2 represents field
billing; field number 3 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

mxSetCell

7-108

7mxSetCellPurpose Set value of one cell of cell mxArray

Fortran Syntax subroutine mxSetCell(pm, index, value)
integer*4 pm, index, value

Arguments pm
Pointer to a cell mxArray.

index
Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate the index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell. Use one of the mxCreate*
functions to create the value mxArray.

Description Call mxSetCell to put the designated value into a particular cell of a cell
mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetCell before you call mxSetCell.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell, mxFree

mxSetData

7-109

7mxSetDataPurpose Set pointer to data

Fortran Syntax subroutine mxSetData(pm, pr)
integer*4 pm, pr

Arguments pm
Pointer to an mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Description Use mxSetData to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetData to initialize the real elements of a freshly created
mxArray. Rather, you call mxSetData to replace the initial real values with new
ones.

mxSetData is equivalent to using mxSetPr.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetData before you call mxSetData.

See Also mxSetImagData, mxGetData, mxGetImagData, mxSetPr, mxFree

mxSetDimensions

7-110

7mxSetDimensionsPurpose Modify number of dimensions and size of each dimension

Fortran Syntax integer*4 function mxSetDimensions(pm, dims, ndim)
integer*4 pm, dims, ndim

Arguments pm
Pointer to an mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Description Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
array. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
array accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

See Also mxGetNumberOfDimensions, mxSetM, mxSetN

mxSetField

7-111

7mxSetFieldPurpose Set structure array field value, given field name and index

Fortran Syntax subroutine mxSetField(pm, index, fieldname, value)
integer*4 pm, index, value
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber to determine existing field names.

value
Pointer to the mxArray you are assigning. Use one of the mxCreate* functions
to create the value mxArray.

Description Use mxSetField to assign a value to the specified element of the specified field.
mxSetField is almost identical to mxSetFieldByNumber; however, the former
takes a field name as its third argument, and the latter takes a field number
as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetField

7-112

Calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetField before you call mxSetField.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetFieldByNumber, mxFree

mxSetFieldByNumber

7-113

7mxSetFieldByNumberPurpose Set structure array field value, given field number and index

Fortran Syntax subroutine mxSetFieldByNumber(pm, index, fieldnumber, value)
integer*4 pm, index, fieldnumber, value

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber
The position of the field whose value you want to extract. The first field within
each element has a fieldnumber of 1, the second field has a fieldnumber of 2,
and so on. The last field has a fieldnumber of N, where N is the number of fields.

value
The value you are assigning. Use one of the mxCreate* functions to create the
value mxArray.

Description Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. mxSetFieldByNumber is almost identical to mxSetField;
however, the former takes a field number as its third argument, and the latter
takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetFieldByNumber

7-114

Calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetFieldByNumber before you call mxSetFieldByNumber.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxFree

mxSetImagData

7-115

7mxSetImagDataPurpose Set imaginary data pointer for mxArray

Fortran Syntax subroutine mxSetImagData(pm, pi)
integer*4 pm, pi

Arguments pm
Pointer to an mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description Use mxSetImagData to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold imaginary
data. If you tell an mxCreate* function to allocate heap space (for example, by
setting the ComplexFlag to COMPLEX = 1 or by setting pi to a nonzero value),
then you do not ordinarily use mxSetImagData to initialize the created
mxArray’s imaginary elements. Rather, you call mxSetImagData to replace the
initial imaginary values with new ones.

mxSetImagData is equivalent to using mxSetPi.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetImagData before you call mxSetImagData.

See Also mxSetData, mxGetImagData, mxGetData, mxSetPi, mxFree

mxSetIr

7-116

7mxSetIr Purpose Set ir array of sparse mxArray

Fortran Syntax subroutine mxSetIr(pm, ir)
integer*4 pm,ir

Arguments pm
Pointer to a sparse mxArray.

ir
Pointer to the ir array. The ir array must be sorted in column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetIr before you call mxSetIr.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc, mxFree

mxSetJc

7-117

7mxSetJcPurpose Set jc array of sparse mxArray

Fortran Syntax subroutine mxSetJc(pm, jc)
integer*4 pm, jc

Arguments pm
Pointer to a sparse mxArray.

jc
Pointer to the jc array.

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetJc before you call mxSetJc.

See Also mxGetIr, mxGetJc, mxSetIr, mxFree

mxSetLogical (Obsolete)

7-118

7mxSetLogical (Obsolete)Compatibility As of MATLAB version 6.5, mxSetLogical is obsolete. Support for
mxSetLogical may be removed in a future version.

This function turns on an mxArray’s logical flag. This flag, when set, tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

See Also mxClearLogical (Obsolete), mxIsLogical, logical

mxSetM

7-119

7mxSetMPurpose Set number of rows of mxArray

Fortran Syntax subroutine mxSetM(pm, m)
integer*4 pm, m

Arguments pm
Pointer to an mxArray.

m
The desired number of rows.

Description Call mxSetM to set the number of rows in the specified mxArray. Call mxSetN to
set the number of columns.

You can use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the array, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently.

See Also mxGetM, mxGetN, mxSetN

mxSetN

7-120

7mxSetN Purpose Set number of columns of mxArray

Fortran Syntax subroutine mxSetN(pm, n)
integer*4 pm, n

Arguments pm
Pointer to an mxArray.

n
The desired number of columns.

Description Call mxSetN to set the number of columns in the specified mxArray. Call mxSetM
to set the number of rows in the specified mxArray.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

See Also mxGetM, mxGetN, mxSetM

mxSetName (Obsolete)

7-121

7mxSetName (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable(workspace, name, pm)

instead of

mxSetName(pm, name);
mexPutArray(pm, workspace);

mxSetNzmax

7-122

7mxSetNzmaxPurpose Set storage space for nonzero elements

Fortran Syntax subroutine mxSetNzmax(pm, nzmax)
integer*4 pm, nzmax

Arguments pm
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays.

How big should nzmax be? One thought is that you set nzmax equal to or slightly
greater than the number of nonzero elements in a sparse mxArray. This
approach conserves precious heap space. Another technique is to make nzmax
equal to the total number of elements in an mxArray. This approach eliminates
(or, at least reduces) expensive reallocations.

See Also mxGetNzmax

mxSetPi

7-123

7mxSetPiPurpose Set new imaginary data for mxArray

Fortran Syntax subroutine mxSetPi(pm, pi)
integer*4 pm, pi

Arguments pm
Pointer to a full (nonsparse) mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

See the description for mxSetImagData, which is an equivalent function to
mxSetPi.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetPi before you call mxSetPi.

See Also mxSetPr, mxGetPi, mxGetPr, mxSetImagData, mxFree

mxSetPr

7-124

7mxSetPrPurpose Set new real data for mxArray

Fortran Syntax subroutine mxSetPr(pm, pr)
integer*4 pm, pr

Arguments pm
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Description Use mxSetPr to set the real data of the specified mxArray.

See the description for mxSetData, which is an equivalent function to mxSetPr.

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxFree on the pointer returned by
mxGetPr before you call mxSetPr.

See Also mxSetPi, mxGetPr, mxGetPi, mxSetData, mxFree

8
MEX-Files (Fortran)
mexAtExit Register function to be called when MEX-file cleared or

MATLAB terminates

mexCallMATLAB Call MATLAB function or user-defined M-file or MEX-file

mexErrMsgIdAndTxt Issue error with identifier and return to MATLAB

mexErrMsgTxt Issue error and return to MATLAB

mexEvalString Execute MATLAB command in caller’s workspace

mexFunction Entry point to Fortran MEX-file

mexFunctionName Name of current MEX-function

mexGetArray (Obsolete) Use mexGetVariable

mexGetArrayPtr (Obsolete) Use mexGetVariablePtr

mexGetEps (Obsolete) Use mxGetEps

mexGetFull (Obsolete) Use mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete) Use mexGetVariablePtr

mexGetInf (Obsolete) Use mxGetInf

mexGetMatrix (Obsolete) Use mexGetVariable

mexGetMatrixPtr (Obsolete) Use mexGetVariablePtr

mexGetNaN (Obsolete) Use mxGetNaN

mexGetVariable Get copy of variable from another workspace

mexGetVariablePtr Get read-only pointer to variable from another workspace

mexIsFinite (Obsolete) Use mxIsFinite

mexIsGlobal Determine if mxArray has global scope

mexIsInf (Obsolete) Use mxIsInf

mexIsLocked Determine if MEX-file is locked

mexIsNaN (Obsolete) Use mxIsNaN

mexLock Prevent MEX-file from being cleared from memory

mexMakeArrayPersistent Make mxArray persist after MEX-file completes

8-2

mexMakeMemoryPersistent Make allocated memory persist after MEX-file completes

mexPrintf ANSI C printf-style output routine

mexPutArray (Obsolete) Use mexPutVariable

mexPutFull (Obsolete) Use mxCreateDoubleMatrix, mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete) Use mexPutVariable

mexPutVariable Copy mxArray from MEX-file to another workspace

mexSetTrapFlag Control response of mexCallMATLAB to errors

mexUnlock Allow MEX-file to be cleared from memory

mexWarnMsgIdAndTxt Issue warning message with identifier

mexWarnMsgTxt Issue warning message

mexAtExit

8-3

8mexAtExitPurpose Register subroutine to be called when MEX-file cleared or MATLAB termi-
nates

Fortran Syntax integer*4 function mexAtExit(ExitFcn)
subroutine ExitFcn()

Arguments ExitFcn
The exit function. This function must be declared as external.

Returns Always returns 0.

Description Use mexAtExit to register a subroutine to be called just before the MEX-file is
cleared or MATLAB is terminated. mexAtExit gives your MEX-file a chance to
perform an orderly shutdown of anything under its control.

Each MEX-file can register only one active exit subroutine at a time. If you call
mexAtExit more than once, MATLAB uses the ExitFcn from the more recent
mexAtExit call as the exit function.

If a MEX-file is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

You must declare the ExitFcn as external in the Fortran routine that calls
mexAtExit if it is not within the scope of the file.

See Also mexSetTrapFlag

mexCallMATLAB

8-4

8mexCallMATLABPurpose Call MATLAB function or operator, user-defined M-file, or other MEX-file

Fortran Syntax integer*4 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs, plhs(*), prhs(*)
character*(*) name

Arguments nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs
Array of mxArray pointers that can be used to access the returned data from the
function call. Once the data is accessed, you can then call mxFree to free the
mxArray pointer. By default, MATLAB frees the pointer and any associated
dynamic memory it allocates when you return from the mexFunction call.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Array of pointers to input data.

name
Character array containing the name of the MATLAB function, operator,
M-file, or MEX-file that you are calling. If name is an operator, place the
operator inside a pair of single quotes; for example, '+'.

Returns 0 if successful, and a nonzero value if unsuccessful and mexSetTrapFlag was
previously called.

Description Call mexCallMATLAB to invoke internal MATLAB functions, MATLAB
operators, M-files, or other MEX-files.

By default, if name detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want a different error behavior,
turn on the trap flag by calling mexSetTrapFlag.

See Also mexFunction, mexSetTrapFlag

mexErrMsgIdAndTxt

8-5

8mexErrMsgIdAndTxtPurpose Issue error with identifier and return to MATLAB prompt

Fortran Syntax subroutine mexErrMsgIdAndTxt(errorid, errormsg)
character*(*) errorid, errormsg

Arguments errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

errormsg
Character array containing the error message to be displayed.

Description Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke any registered exit routine
to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgIdAndTxt automatically frees any associated
memory allocated by these calls.

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

8-6

8mexErrMsgTxtPurpose Issue error and return to MATLAB prompt

Fortran Syntax subroutine mexErrMsgTxt(errormsg)
character*(*) errormsg

Arguments errormsg
Character array containing the error message to be displayed.

Description Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke any registered exit routine to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgTxt automatically frees any associated memory
allocated by these calls.

See Also mexErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

mexEvalString

8-7

8mexEvalStringPurpose Execute MATLAB command in workspace of caller

Fortran Syntax integer*4 function mexEvalString(command)
character*(*) command

Arguments command
A character array containing the MATLAB command to execute.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace of the
caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command array
must already be current variables of the caller’s workspace.

See Also mexCallMATLAB

mexFunction

8-8

8mexFunctionPurpose MATLAB entry point to Fortran MEX-file

Fortran Syntax subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

Arguments nlhs
The number of expected outputs.

plhs
Array of pointers to expected outputs.

nrhs
The number of inputs.

prhs
Array of pointers to input data. The input data is read only and should not be
altered by your mexFunction.

Description mexFunction is not a routine you call. Rather, mexFunction is the name of a
subroutine you must write in every MEX-file. When you invoke a MEX-file,
MATLAB searches for a subroutine named mexFunction inside the MEX-file.
If it finds one, then the first executable line in mexFunction becomes the
starting point of the MEX-file. If MATLAB cannot find a subroutine named
mexFunction inside the MEX-file, MATLAB issues an error message.

When you invoke a MEX-file, MATLAB automatically loads nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,] = fun(d,e,f,)

where the denotes more items of the same format. The a,b,c are left-hand
side arguments and the d,e,f are right-hand side arguments. The arguments
nlhs and nrhs contain the number of left-hand side and right-hand side
arguments, respectively, with which the MEX-file is called. prhs is an array of
mxArray pointers whose length is nrhs. plhs is a pointer to an array whose
length is nlhs, where your function must set pointers for the returned left-hand
side mxArrays.

mexFunctionName

8-9

8mexFunctionNamePurpose Get name of current MEX-function

Fortran Syntax character*(*) function mexFunctionName()

Arguments None

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

mexGetArray (Obsolete)

8-10

8mexGetArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariable(workspace, name)

instead of

mexGetArray(name, workspace)

See Also mexGetVariable

mexGetArrayPtr (Obsolete)

8-11

8mexGetArrayPtr (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr(workspace, varname)

instead of

mexGetArrayPtr(varname, workspace)

See Also mexGetVariablePtr

mexGetEps (Obsolete)

8-12

8mexGetEps (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetEps instead.

mexGetFull (Obsolete)

8-13

8mexGetFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mexGetVariable("caller", name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)

instead of

mexGetFull(name, m, n, pr, pi)

See Also mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete)

8-14

8mexGetGlobal (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr("global", name)

instead of

mexGetGlobal(name)

See Also mexGetVariablePtr, mxGetPr, mxGetPi

mexGetInf (Obsolete)

8-15

8mexGetInf (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetInf instead.

mexGetMatrix (Obsolete)

8-16

8mexGetMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariable("caller", name)

instead of

mexGetMatrix(name)

See Also mexGetVariable

mexGetMatrixPtr (Obsolete)

8-17

8mexGetMatrixPtr (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr("caller", name)

instead of

mexGetMatrixPtr(name)

See Also mexGetVariablePtr

mexGetNaN (Obsolete)

8-18

8mexGetNaN (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetNaN instead.

mexGetVariable

8-19

8mexGetVariablePurpose Get copy of variable from specified workspace

Fortran Syntax integer*4 function mexGetVariable(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies where mexGetVariable should search in order to find variable
varname. The possible values are:

varname
Name of the variable to copy.

Returns A copy of the variable on success. Returns 0 on failure. A common cause of
failure is specifying a variable that is not currently in the workspace.

Description Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace
with mexPutVariable.

See Also mexGetVariablePtr, mexPutVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexGetVariablePtr

8-20

8mexGetVariablePtrPurpose Get read-only pointer to variable from specified workspace

Fortran Syntax integer*4 function mexGetVariablePtr(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

varname
Name of the variable to copy. (Note that this is a variable name, not an mxArray
pointer.)

Returns A read-only pointer to the mxArray on success. Returns 0 on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified variable
varname from the specified workspace. This command is useful for examining
an mxArray’s data and characteristics. If you need to change data or
characteristics, use mexGetVariable (along with mexPutVariable) instead of
mexGetVariablePtr.

See Also mexGetVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexIsFinite (Obsolete)

8-21

8mexIsFinite (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsFinite instead.

mexIsGlobal

8-22

8mexIsGlobalPurpose Determine if mxArray has global scope

Fortran Syntax integer*4 function mexIsGlobal(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false) otherwise.

Description Use mexIsGlobal to determine if the specified mxArray has global scope.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

mexIsInf (Obsolete)

8-23

8mexIsInf (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsInf instead.

mexIsLocked

8-24

8mexIsLockedPurpose Determine if MEX-file is locked

Fortran Syntax integer*4 function mexIsLocked()

Arguments None

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file is unlocked.

Description Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

See Also mexLock, mexUnlock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexIsNaN (Obsolete)

8-25

8mexIsNaN (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsNaN instead.

mexLock

8-26

8mexLockPurpose Prevent MEX-file from being cleared from memory

Fortran Syntax subroutine mexLock()

Arguments None

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

mexMakeArrayPersistent

8-27

8mexMakeArrayPersistentPurpose Make mxArray persist after MEX-file completes

Fortran Syntax subroutine mexMakeArrayPersistent(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray created by an mxCreate* routine.

Description By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-file finishes. If you want the mxArray to persist
through multiple invocations of the MEX-file, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit on how to register a function that
gets called when the MEX-file is cleared. See mexLock on how to lock your
MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

8-28

8mexMakeMemoryPersistentPurpose Make allocated memory persist after MEX-file completes

Fortran Syntax subroutine mexMakeMemoryPersistent(ptr)
integer*4 ptr

Arguments ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

Description By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing it when
the MEX-file is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit on how to register a
function that gets called when the MEX-file is cleared. See mexLock on how to
lock your MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

mexPrintf

8-29

8mexPrintfPurpose Print character array

Fortran Syntax integer*4 function mexPrintf(message)
character*(*) message

Arguments message
Character array containing message to be displayed.

Note Optional arguments to mexPrintf, such as format strings, are not
supported in Fortran.

Note If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do so
causes unpredictable results.

Returns The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

Description mexPrintf prints a character array on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine already
linked inside MATLAB.

See Also mexErrMsgTxt

mexPutArray (Obsolete)

8-30

8mexPutArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable(workspace, name, pm)

instead of

mxSetName(pm, name);
mexPutArray(pm, workspace);

See Also mexPutVariable

mexPutFull (Obsolete)

8-31

8mexPutFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
mexPutVariable("caller", name, pm)

instead of

mexPutFull(name, m, n, pr, pi)

See Also mxCreateDoubleMatrix, mxSetName (Obsolete), mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete)

8-32

8mexPutMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable("caller", name, pm)

instead of

mexPutMatrix(pm)

See Also mexPutVariable

mexPutVariable

8-33

8mexPutVariablePurpose Copy mxArray into specified workspace

Fortran Syntax integer*4 function mexPutVariable(workspace, varname, pm)
character*(*) workspace, varname
integer*4 pm

Arguments workspace
Specifies the scope of the array that you are copying. The possible values are:

varname
Name given to the mxArray in the workspace.

pm
Pointer to an mxArray.

Returns 0 on success; 1 on failure. A possible cause of failure is that the pm argument is
zero.

Description Call mexPutVariable to copy the mxArray, at pointer pm, from your MEX-file
into the specified workspace. MATLAB gives the name, varname, to the copied
mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-files.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the MATLAB workspace.

mexPutVariable("base", "Peaches", pm)

base Copy the mxArray to the base workspace

caller Copy the mxArray to the caller’s workspace

global Copy the mxArray to the list of global variables

mexPutVariable

8-34

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

See Also mexGetVariable

mexSetTrapFlag

8-35

8mexSetTrapFlagPurpose Control response of mexCallMATLAB to errors

Fortran Syntax subroutine mexSetTrapFlag(trapflag)
integer*4 trapflag

Arguments trapflag
Control flag. Currently, the only legal values are:

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trapflag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trapflag to 1, then whenever MATLAB
detects an error in a call to mexCallMATLAB, MATLAB does not automatically
terminate the MEX-file. Rather, MATLAB returns control to the line in the
MEX-file immediately following the call to mexCallMATLAB. The MEX-file is
then responsible for taking an appropriate response to the error.

If you call mexSetTrapFlag, the value of the trap_flag you set remains in effect
until the next call to mexSetTrapFlag within that MEX-file or, if there are no
more calls to mexSetTrapFlag, until the MEX-file exits. If a routine defined in
a MEX-file calls another MEX-file:

1 The current value of the trap_flag in the first MEX-file is saved.

2 The second MEX-file is called with the trap_flag initialized to 0 within that
file.

3 When the second MEX-file exits, the saved value of the trap_flag in the
first MEX-file is restored within that file.

See Also mexAtExit, mexErrMsgTxt

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

mexUnlock

8-36

8mexUnlockPurpose Allow MEX-file to be cleared from memory

Fortran Syntax subroutine mexUnlock()

Arguments none

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexWarnMsgIdAndTxt

8-37

8mexWarnMsgIdAndTxtPurpose Issue warning message with identifier

Fortran Syntax subroutine mexWarnMsgIdAndTxt(warningid, warningmsg)
character*(*) warningid, warningmsg

Arguments errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

warningmsg
String containing the warning message to be displayed.

Description mexWarnMsgIdAndTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

See Also mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

mexWarnMsgTxt

8-38

8mexWarnMsgTxtPurpose Issue warning message

Fortran Syntax subroutine mexWarnMsgTxt(warningmsg)
character*(*) warningmsg

Arguments warningmsg
String containing the warning message to be displayed.

Description mexWarnMsgTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

See Also mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

9
MATLAB Engine
(Fortran)
engClose Quit MATLAB engine session

engEvalString Evaluate expression in character array

engGetArray (Obsolete) Use engGetVariable

engGetFull (Obsolete) Use engGetVariable followed by appropriate mxGet routines

engGetMatrix (Obsolete) Use engGetVariable

engGetVariable Copy variable from engine workspace

engOpen Start MATLAB engine session

engOutputBuffer Specify buffer for MATLAB output

engPutArray (Obsolete) Use engPutVariable

engPutFull (Obsolete) Use mxCreateDoubleMatrix and engPutVariable

engPutMatrix (Obsolete) Use engPutVariable

engPutVariable Put variables into engine workspace

engClose

9-2

9engClosePurpose Quit MATLAB engine session

Fortran Syntax integer*4 function engClose(ep)
integer*4 ep

Arguments ep
Engine pointer.

Description This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

Examples See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engEvalString

9-3

9engEvalStringPurpose Evaluate expression in character array

Fortran Syntax integer*4 function engEvalString(ep, command)
integer*4 ep
character*(*) command

Arguments ep
Engine pointer.

command
character array to execute.

Description engEvalString evaluates the expression contained in command for the
MATLAB engine session, ep, previously started by engOpen. It returns a
nonzero value if the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to the MATLAB stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer.

Examples See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

See Also engOpen, engOutputBuffer

engGetArray (Obsolete)

9-4

9engGetArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

engGetFull (Obsolete)

9-5

9engGetFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mp = engGetVariable(ep, name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)
mxDestroyArray(pm)

instead of

engGetFull(ep, name, m, n, pr, pi)

See Also engGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

engGetMatrix (Obsolete)

9-6

9engGetMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

engGetVariable

9-7

9engGetVariablePurpose Copy variable from MATLAB engine workspace

Fortran Syntax integer*4 function engGetVariable(ep, name)
integer*4 ep
character*(*) name

Arguments ep
Engine pointer.

name
Name of mxArray to get from MATLAB.

Description engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or 0 if the attempt fails. engGetVariable fails if the named variable
does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See Also engPutVariable

engOpen

9-8

9engOpenPurpose Start MATLAB engine session

Fortran Syntax integer*4 function engOpen(startcmd)
integer*4 ep
character*(*) startcmd

Arguments ep
Engine pointer.

startcmd
Character array to start a MATLAB process.

Description This routine allows you to start a MATLAB process to use MATLAB as a
computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
startcmd, establishes a connection, and returns a unique engine identifier, or
0 if the open fails.

On the UNIX system, if startcmd is empty, engOpen starts MATLAB on the
current host using the command matlab. If startcmd is a hostname, engOpen
starts MATLAB on the designated host by embedding the specified hostname
string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is anything else (has white space in it, or nonalphanumeric
characters), it is executed literally to start MATLAB.

engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
the child to two file descriptors in the parent.

3 Executes a command to run MATLAB (rsh for remote execution).

Examples See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engOutputBuffer

9-9

9engOutputBufferPurpose Specify buffer for MATLAB output

Fortran Syntax integer*4 function engOutputBuffer(ep, p)
integer*4 ep
character*n p

Arguments ep
Engine pointer.

p
Character buffer of length n, where n is the length of buffer p.

Description engOutputBuffer defines a character buffer for engEvalString to return any
output that would appear on the screen. It returns 1 if you pass it a NULL
engine pointer. Otherwise, it returns 0.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer p.

engPutArray (Obsolete)

9-10

9engPutArray (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

engPutVariable(ep, name, pm)

instead of

mxSetName(pm, name);
engPutArray(pm, ep);

engPutFull (Obsolete)

9-11

9engPutFull (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mp = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
engPutVariable(ep, name, pm)

mxDestroyArray(pm)

instead of

engPutFull(ep, name, m, n, pr, pi)

See Also engPutVariable, mxCreateDoubleMatrix, mxSetPr, mxSetPi, mxDestroyArray

engPutMatrix (Obsolete)

9-12

9engPutMatrix (Obsolete)Compatibility This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engPutVariable instead.

engPutVariable

9-13

9engPutVariablePurpose Put variables into MATLAB engine workspace

Fortran Syntax integer*4 function engPutVariable(ep, name, pm)
integer*4 ep, pm
character*(*) name

Arguments ep
Engine pointer.

name
Name given to the mxArray in the engine’s workspace.

pm
mxArray pointer.

Description engPutVariable writes mxArray mp to the engine ep. If the mxArray does not
exist in the workspace, it is created. If an mxArray with the same name already
exists in the workspace, the existing mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

See Also engGetVariable

engPutVariable

9-14

10
Java
class Create object or return class of object

fieldnames Return property names of object

import Add package or class to current Java import list

inspect Display graphical interface to list and modify property values

isa Determine if input is object of given class

isjava Determine if input is Java object

ismethod Determine if input is object method

isprop Determine if input is object property

javaaddpath Add entries to dynamic Java class path

javaArray Construct Java array

javachk Generate error message based on Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java class path

methods Display information on class methods

methodsview Display information on class methods in separate window

usejava Determine if Java feature is supported in MATLAB

10-2

11
Component Object Model
and ActiveX
This section describes the functions that support the MATLAB interface to Component Object Model
(COM) technology. These fall into the following two categories.

COM Client (p. 11-2) Functions that enable a MATLAB client application to start a
COM server or control, and to interact with its properties,
methods, and events.

COM Server (p. 11-4) Functions called from a client application that execute in the
MATLAB server enabling the client to execute commands and
access data on the server.

COM Client

11-2

COM Client 11

actxcontrol Create ActiveX control in figure window

actxcontrollist List all currently installed ActiveX controls

actxcontrolselect Display graphical interface for creating ActiveX control

actxserver Create COM Automation server

addproperty Add custom property to object

class Create object or return class of object

delete Delete COM control or server

deleteproperty Remove custom property from object

eventlisteners Return list of events attached to listeners

events Return list of events the control can trigger

fieldnames Return property names of object

get Get property value from interface, or display properties

inspect Display graphical interface to list and modify property values

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface, or display methods

isa Detect object of given MATLAB class or Java class

iscom Determine if input is COM object

isevent Determine if input is event

isinterface Determine if input is COM interface

ismethod Determine if input is object method

isprop Determine if input is object property

load Initialize control object from file

methods List all methods for control or server

methodsview Display graphical interface to list method information

move Move or resize control in parent window

COM Client

11-3

propedit Display built-in property page for control

registerevent Register event handler with control's event

release Release interface

save Serialize control object to file

send Obsolete — duplicate of events

set Set object or interface property to specified value

unregisterallevents Unregister all events for control

unregisterevent Unregister event handler with control's event

COM Server

11-4

COM Server 11

enableservice Enable DDE or COM Automation server

Execute Execute MATLAB command in server

Feval Evaluate MATLAB function in server

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetVariable Returns data from variable in server workspace

GetWorkspaceData Get data from server workspace

MaximizeCommandWindow Display server window on Windows desktop

MinimizeCommandWindow Minimize size of server window

PutCharArray Store character array in server

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit Terminate MATLAB server

12
Dynamic Data Exchange
ddeadv Set up advisory link

ddeexec Send string for execution

ddeinit Initiate DDE conversation

ddepoke Send data to application

ddereq Request data from application

ddeterm Terminate DDE conversation

ddeunadv Release advisory link

12-2

13
Web Services
callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB object based on WSDL file

createSoapMessage Create SOAP message to send to server

parseSoapResponse Convert response string from SOAP server into MATLAB data types

13-4

14
Serial Port Devices
clear Remove serial port object from MATLAB workspace

delete Remove serial port object from memory

disp Display serial port object summary information

fclose Disconnect serial port object from the device

fgetl Read from device and discard the terminator

fgets Read from device and include the terminator

fopen Connect serial port object to the device

fprintf Write text to the device

fread Read binary data from the device

fscanf Read data from device and format as text

fwrite Write binary data to the device

get Return serial port object properties

instrcallback Display event information when an event occurs

instrfind Return serial port objects from memory to the MATLAB workspace

isvalid Determine if serial port objects are valid

length Length of serial port object array

load Load serial port objects and variables into MATLAB workspace

readasync Read data asynchronously from the device

record Record data and event information to a file

save Save serial port objects and variables to MAT-file

serial Create a serial port object

serialbreak Send break to device connected to the serial port

set Configure or display serial port object properties

size Size of serial port object array

stopasync Stop asynchronous read and write operations

14-2

Index-1

Index

A
allocating matrix 7-40
allocating memory 3-10, 7-7, 7-8

B
buffer

defining output 5-13, 9-9

D
deleting named matrix from MAT-file 2-6, 6-5
directory 2-9, 6-8

E
engClose 5-2
engEvalString 5-3
engGetVariable 5-8, 9-7
engGetVisible 5-9
engines 5-2, 9-2

getting and putting Matrices into 5-8, 5-18, 9-7,
9-13

engOpen 5-10
engPutMatrix 9-13
engPutVariable 5-18
engSetVisible 5-21
errors

control response to 4-40, 8-35
issuing messages 4-7, 4-8, 8-5, 8-6

F
functions

calling at shutdown 4-4

G
getting

directory 2-9, 6-8

M
matClose 2-22, 6-19
matDeleteArray 2-4
matDeleteMatrix 2-6, 6-5
MAT-files

deleting named Matrix from 2-6, 6-5
getting and putting Matrices into 2-20, 2-30,

2-31, 6-17, 6-26, 6-27
getting next Matrix from 2-17, 6-14
getting pointer to 2-10
opening and closing 2-3, 2-22, 6-2, 6-19

matGetDir 2-9, 6-8
matGetFp 2-10
matGetMatrix 2-7, 2-13, 6-7, 6-10
matGetNextVariable 2-17, 6-14
matGetNextVariableInfo 2-18, 6-15
matGetVariable 2-20, 6-17
matGetVariableInfo 2-21, 6-18
matOpen 2-3, 6-2
matPutMatrix 2-28, 6-24
matPutVariable 2-30, 6-26
matPutVariableAsGlobal 2-31, 6-27
mexAddFlops 4-3
mexAtExit 4-4
mexCallMATLAB 4-5
mexErrMsgIdAndTxt 4-7, 4-42
mexErrMsgTxt 4-8, 4-43, 8-37, 8-38
mexEvalString 4-9
MEX-files

entry point to 4-10, 8-8
mexFunction 4-10

Index

Index-2

mexGetArray 8-19
mexGetMatrix 4-23
mexPrintf 4-31, 4-32, 4-33, 8-27, 8-28
mexSetTrapFlag 4-40

O
opening MAT-files 2-3, 2-22, 6-2, 6-19

P
pointer

to MAT-file 2-10
printing 4-28, 4-30, 4-31, 4-32, 4-41
putting

Matrices into engine's workspace 5-18
Matrices into engine’s workspace 9-13
Matrices into MAT-files 2-31, 6-27

S
scalar 7-77
sparse arrays 7-65
starting MATLAB engines 5-2
string

executing statement 5-3, 9-3

	Dynamic Link Libraries
	MAT-File Access (C)
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFp
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	MX Array Manipulation (C)
	mxAddField
	mxArrayToString
	mxAssert
	mxAssertS
	mxCalcSingleSubscript
	mxCalloc
	mxChar
	mxClassID
	mxClearLogical (Obsolete)
	mxComplexity
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateDoubleScalar
	mxCreateFull (Obsolete)
	mxCreateLogicalArray
	mxCreateLogicalMatrix
	mxCreateLogicalScalar
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateSparseLogicalMatrix
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetChars
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetLogicals
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsInt64
	mxIsLogical
	mxIsLogicalScalar
	mxIsLogicalScalarTrue
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxIsUint64
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetCell
	mxSetClassName
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	MEX-Files (C)
	mexAddFlops (Obsolete)
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGet
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSet
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	MATLAB Engine (C)
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engGetVisible
	engOpen
	engOpenSingleUse
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable
	engSetEvalCallback (Obsolete)
	engSetEvalTimeout (Obsolete)
	engSetVisible
	engWinInit (Obsolete)

	MAT-File Access (Fortran)
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	MX Array Manipulation (Fortran)
	mxAddField
	mxCalcSingleSubscript
	mxCalloc
	mxClassIDFromClassName
	mxClearLogical (Obsolete)
	mxCopyCharacterToPtr
	mxCopyComplex8ToPtr
	mxCopyComplex16ToPtr
	mxCopyInteger1ToPtr
	mxCopyInteger2ToPtr
	mxCopyInteger4ToPtr
	mxCopyPtrToCharacter
	mxCopyPtrToComplex8
	mxCopyPtrToComplex16
	mxCopyPtrToInteger1
	mxCopyPtrToInteger2
	mxCopyPtrToInteger4
	mxCopyPtrToPtrArray
	mxCopyPtrToReal4
	mxCopyPtrToReal8
	mxCopyReal4ToPtr
	mxCopyReal8ToPtr
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateFull (Obsolete)
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsInt64
	mxIsLogical
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxIsUint64
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetCell
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	MEX-Files (Fortran)
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	MATLAB Engine (Fortran)
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engOpen
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable

	Java
	Component Object Model and ActiveX
	COM Client
	COM Server

	Dynamic Data Exchange
	Web Services
	Serial Port Devices
	Index

